scispace - formally typeset
Search or ask a question
Author

Sakshi Popli

Bio: Sakshi Popli is an academic researcher from Shri Mata Vaishno Devi University. The author has contributed to research in topics: Energy consumption & Work (physics). The author has an hindex of 2, co-authored 5 publications receiving 133 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A profound view of IoT and NBIoT is presented, subsuming their technical features, resource allocation, and energy-efficiency techniques and applications, and two novel energy-efficient techniques "zonal thermal pattern analysis" and "energy-efficient adaptive health monitoring system" have been proposed towards green IoT.
Abstract: The advancement of technologies over years has poised Internet of Things (IoT) to scoop out untapped information and communication technology opportunities. It is anticipated that IoT will handle the gigantic network of billions of devices to deliver plenty of smart services to the users. Undoubtedly, this will make our life more resourceful but at the cost of high energy consumption and carbon footprint. Consequently, there is a high demand for green communication to reduce energy consumption, which requires optimal resource availability and controlled power levels. In contrast to this, IoT devices are constrained in terms of resources—memory, power, and computation. Low power wide area (LPWA) technology is a response to the need for efficient utilization of power resource, as it evinces characteristics such as the capability to proffer low power connectivity to a huge number of devices spread over wide geographical areas at low cost. Various LPWA technologies, such as LoRa and SigFox, exist in the market, offering a proficient solution to the users. However, in order to abstain the need of new infrastructure (like base station) that is required for proprietary technologies, a new cellular-based licensed technology, narrowband IoT (NBIoT), is introduced by 3GPP in Rel-13. This technology presents a good candidature to handle LPWA market because of its characteristics like enhanced indoor coverage, low power consumption, latency insensitivity, and massive connection support towards NBIoT. This survey presents a profound view of IoT and NBIoT, subsuming their technical features, resource allocation, and energy-efficiency techniques and applications. The challenges that hinder the NBIoT path to success are also identified and discussed. In this paper, two novel energy-efficient techniques “zonal thermal pattern analysis” and energy-efficient adaptive health monitoring system have been proposed towards green IoT.

214 citations

Journal ArticleDOI
TL;DR: ICT's own environmental impact must be evaded, to utilize the ICT's tremendous potential, this survey concludes.

12 citations

Journal ArticleDOI
TL;DR: The journey of IoT to Green IoT is described, ability of unmanned aerial vehicle (UAV) technology to provide Green IoT and survey on recent energy-efficient UAV assisted communication is presented, and a dual battery enabled Unmanned Aerial vehicle base station, an energy- efficient clustering algorithm, has been proposed to prolong the battery life.
Abstract: The Internet of Things (IoT) embodies the confluence of the virtual & physical world. IoT will play an important role in managing the managing depleting resource such as water, fuel, food, etc. However, to realize these applications enormous IoT devices will communicate with each other. This massive connectivity will directly or indirectly aid in Green House Gas emissions. Hence, to admissibly reduce this environmental impact of IoT, it must be greened in terms of energy consumption. Green IoT will reduce environmental exploitation by slashing carbon emission effectively and thus will help in achieving sustainability of the planet. This paper describes the journey of IoT to Green IoT. Along with this, the survey on recent Green-IoT techniques that will effectively help in reducing required energy consumption is presented. Along with this ability of unmanned aerial vehicle (UAV) technology to provide Green IoT and survey on recent energy-efficient UAV assisted communication is presented. In addition to this, a dual battery enabled Unmanned Aerial vehicle base station, an energy-efficient clustering algorithm, has also been proposed to prolong the battery life.

11 citations

Journal ArticleDOI
TL;DR: The proposed model has promising potential in terms of saving infrastructure requirements and ensuring green farming communication as it significantly increased the energy efficiency of NB-IoT enabled sensor network and has a constructive impact on sensor battery life.

11 citations

Journal ArticleDOI
TL;DR: A fuzzy logic-aided solution has also been proposed for NB-IoT enabled sensor network, uplink resource grant, and post allocation resource re-utilization, which improved the Quality of Experience (QoE) by 2-14%.

5 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The limitations of IoT for multimedia computing are explored and the relationship between the M-IoT and emerging technologies including event processing, feature extraction, cloud computing, Fog/Edge computing and Software-Defined-Networks (SDNs) is presented.
Abstract: The immense increase in multimedia-on-demand traffic that refers to audio, video, and images, has drastically shifted the vision of the Internet of Things (IoT) from scalar to Multimedia Internet of Things (M-IoT). IoT devices are constrained in terms of energy, computing, size, and storage memory. Delay-sensitive and bandwidth-hungry multimedia applications over constrained IoT networks require revision of IoT architecture for M-IoT. This paper provides a comprehensive survey of M-IoT with an emphasis on architecture, protocols, and applications. This article starts by providing a horizontal overview of the IoT. Then, we discuss the issues considering the characteristics of multimedia and provide a summary of related M-IoT architectures. Various multimedia applications supported by IoT are surveyed, and numerous use cases related to road traffic management, security, industry, and health are illustrated to show how different M-IoT applications are revolutionizing human life. We explore the importance of Quality-of-Experience (QoE) and Quality-of-Service (QoS) for multimedia transmission over IoT. Moreover, we explore the limitations of IoT for multimedia computing and present the relationship between the M-IoT and emerging technologies including event processing, feature extraction, cloud computing, Fog/Edge computing and Software-Defined-Networks (SDNs). We also present the need for better routing and Physical-Medium Access Control (PHY-MAC) protocols for M-IoT. Finally, we present a detailed discussion on the open research issues and several potential research areas related to emerging multimedia communication in IoT.

182 citations

Journal ArticleDOI
TL;DR: The proposed IoT-based system for home automation can easily and efficiently control appliances over the Internet and support home safety with autonomous operation and can notably provide convenience, safety, and security for SH residents.
Abstract: Home automation systems have attracted considerable attention with the advancement of communications technology. A smart home (SH) is an Internet of Things (IoT) application that utilizes the Internet to monitor and control appliances using a home automation system. Lack of IoT technology usage, unfriendly user interface, limited wireless transmission range, and high costs are the limitations of existing home automation systems. Therefore, this study presents a cost-effective and hybrid (local and remote) IoT-based home automation system with a user-friendly interface for smartphones and laptops. A prototype called IoT@HoMe is developed with an algorithm to enable the monitoring of home conditions and automate the control of home appliances over the Internet anytime and anywhere. This system utilizes a node microcontroller unit (NodeMCU) as a Wi-Fi-based gateway to connect different sensors and updates their data to Adafruit IO cloud server. The collected data from several sensors (radio-frequency identification, ultrasonic, temperature, humidity, gas, and motion sensors) can be accessed via If This Then That (IFTTT) on users' devices (smartphones and/or laptops) over the Internet regardless of their location. A set of relays is used to connect the NodeMCU to homes under controlled appliances. The designed system is structured in a portable manner as a control box that can be attached for monitoring and controlling a real house. The proposed IoT-based system for home automation can easily and efficiently control appliances over the Internet and support home safety with autonomous operation. IoT@HoMe is a low cost and reliable automation system that reduces energy consumption and can notably provide convenience, safety, and security for SH residents.

125 citations

Journal ArticleDOI
TL;DR: This work presents energy-harvesting and sub-systems for IoT networks, and highlights future design challenges of IoT energy harvesters that must be addressed to continuously and reliably deliver energy.
Abstract: An increasing number of objects (things) are being connected to the Internet as they become more advanced, compact, and affordable. These Internet-connected objects are paving the way toward the emergence of the Internet of Things (IoT). The IoT is a distributed network of low-powered, low-storage, light-weight and scalable nodes. Most low-power IoT sensors and embedded IoT devices are powered by batteries with limited lifespans, which need replacement every few years. This replacement process is costly, so smart energy management could play a vital role in enabling energy efficiency for communicating IoT objects. For example, harvesting of energy from naturally or artificially available environmental resources removes IoT networks’ dependence on batteries. Scavenging unlimited amounts of energy in contrast to battery-powered solutions makes IoT systems long-lasting. Thus, here we present energy-harvesting and sub-systems for IoT networks. After surveying the options for harvesting systems, distribution approaches, storage devices and control units, we highlight future design challenges of IoT energy harvesters that must be addressed to continuously and reliably deliver energy.

98 citations

Journal ArticleDOI
TL;DR: Under the on-board energy constraints of UAVs and interference temperature constraints from UAV swarm to satellite users, iterative multi-domain resource allocation algorithms are presented to improve network efficiency with guaranteed user fairness and the adaptive cell-free coverage pattern is observed.
Abstract: In fifth generation (5G) and beyond Internet of Things (IoT), it becomes increasingly important to serve a massive number of IoT devices outside the coverage of terrestrial cellular networks. Due to their own limitations, unmanned aerial vehicles (UAVs) and satellites need to coordinate with each other in the coverage holes of 5G, leading to a cognitive satellite-UAV network (CSUN). In this paper, we investigate multi-domain resource allocation for CSUNs consisting of a satellite and a swarm of UAVs, so as to improve the efficiency of massive access in wide areas. Particularly, the cell-free on-demand coverage is established to overcome the cost-ineffectiveness of conventional cellular architecture. Opportunistic spectrum sharing is also implemented to cope with the spectrum scarcity problem. To this end, a process-oriented optimization framework is proposed for jointly allocating subchannels, transmit power and hovering times, which considers the whole flight process of UAVs and uses only the slowly-varying large-scale channel state information (CSI). Under the on-board energy constraints of UAVs and interference temperature constraints from UAV swarm to satellite users, we present iterative multi-domain resource allocation algorithms to improve network efficiency with guaranteed user fairness. Simulation results demonstrate the superiority of the proposed algorithms. Moreover, the adaptive cell-free coverage pattern is observed, which implies a promising way to efficiently serve wide-area IoT devices in the upcoming sixth generation (6G) era.

91 citations

Journal ArticleDOI
TL;DR: By supplying power to electronic devices and wireless monitoring systems including temperature sensors and humidity sensors, it is shown that the creation and implementation of such an energy harvester is practical and has a significant impact on promoting the development of IoT.

90 citations