scispace - formally typeset
Search or ask a question
Author

Salih Ozen Unverdi

Bio: Salih Ozen Unverdi is an academic researcher from Gebze Institute of Technology. The author has contributed to research in topics: Exergy & Exergy efficiency. The author has an hindex of 6, co-authored 9 publications receiving 2358 citations. Previous affiliations of Salih Ozen Unverdi include Scientific and Technological Research Council of Turkey & University of Michigan.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a method to simulate unsteady multi-fluid flows in which a sharp interface or a front separates incompressible fluids of different density and viscosity is described.

2,340 citations

Journal ArticleDOI
TL;DR: In this paper, the Navier-Stokes equations are solved by a finite difference method, and the interface is kept sharp by front tracking, while the difference between the large-amplitude stages of flows initiated by two and three-dimensional perturbations is discussed.
Abstract: The fully three‐dimensional deformation of an interface between two fluids resulting from a Rayleigh–Taylor instability is studied numerically in the limit of weak stratification. The Navier–Stokes equations are solved by a finite difference method, and the interface is kept sharp by front tracking. The difference between the large‐amplitude stages of flows initiated by two‐ and three‐dimensional perturbations is discussed.

122 citations

Journal ArticleDOI
TL;DR: In this article, the two-dimensional Kelvin-Helmholtz instability of a sheared fluid interface separating immiscible fluids is studied by numerical simulations and the evolution is determined by the density ratio of the fluids, the Reynolds number in each fluid, and the Weber number.
Abstract: The two-dimensional Kelvin–Helmholtz instability of a sheared fluid interface separating immiscible fluids is studied by numerical simulations. The evolution is determined by the density ratio of the fluids, the Reynolds number in each fluid, and the Weber number. Unlike the Kelvin–Helmholtz instability of miscible fluids, where the sheared interface evolves into well-defined concentrated vortices if the Reynolds number is high enough, the presence of surface tension leads to the generation of fingers of interpenetrating fluids. In the limit of a small density ratio the evolution is symmetric, but for a finite density difference the large amplitude stage consists of narrow fingers of the denser fluid penetrating into the lighter fluid. The initial growth rate is well predicted by inviscid theory when the Reynolds numbers are sufficiently high, but the large amplitude behavior is strongly affected by viscosity and the mode that eventually leads to fingers is longer than the inviscidly most unstable one.

54 citations

Journal ArticleDOI
TL;DR: In this paper, a parametric study of the performance of a Solid Oxide Fuel Cell (SOFC) system for several types of supplied fuels is carried out, and the overall energy and exergy performance of the system is evaluated, at 5500 A/m2 current density for M3 operation mode among the three operation modes considered.

39 citations

Journal ArticleDOI
TL;DR: In this article, the global warming, environmental and sustainability aspects of a geothermal energy-based biodigester integrated SOFC system are parametrically analyzed, and the maximum exergetic sustainability index and exergy efficiency of the integrated system are calculated.

21 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The term immersed boundary (IB) method is used to encompass all such methods that simulate viscous flows with immersed (or embedded) boundaries on grids that do not conform to the shape of these boundaries.
Abstract: The term “immersed boundary method” was first used in reference to a method developed by Peskin (1972) to simulate cardiac mechanics and associated blood flow. The distinguishing feature of this method was that the entire simulation was carried out on a Cartesian grid, which did not conform to the geometry of the heart, and a novel procedure was formulated for imposing the effect of the immersed boundary (IB) on the flow. Since Peskin introduced this method, numerous modifications and refinements have been proposed and a number of variants of this approach now exist. In addition, there is another class of methods, usually referred to as “Cartesian grid methods,” which were originally developed for simulating inviscid flows with complex embedded solid boundaries on Cartesian grids (Berger & Aftosmis 1998, Clarke et al. 1986, Zeeuw & Powell 1991). These methods have been extended to simulate unsteady viscous flows (Udaykumar et al. 1996, Ye et al. 1999) and thus have capabilities similar to those of IB methods. In this review, we use the term immersed boundary (IB) method to encompass all such methods that simulate viscous flows with immersed (or embedded) boundaries on grids that do not conform to the shape of these boundaries. Furthermore, this review focuses mainly on IB methods for flows with immersed solid boundaries. Application of these and related methods to problems with liquid-liquid and liquid-gas boundaries was covered in previous reviews by Anderson et al. (1998) and Scardovelli & Zaleski (1999). Consider the simulation of flow past a solid body shown in Figure 1a. The conventional approach to this would employ structured or unstructured grids that conform to the body. Generating these grids proceeds in two sequential steps. First, a surface grid covering the boundaries b is generated. This is then used as a boundary condition to generate a grid in the volume f occupied by the fluid. If a finite-difference method is employed on a structured grid, then the differential form of the governing equations is transformed to a curvilinear coordinate system aligned with the grid lines (Ferziger & Peric 1996). Because the grid conforms to the surface of the body, the transformed equations can then be discretized in the

3,184 citations

Journal ArticleDOI
TL;DR: In this paper, a method to simulate unsteady multi-fluid flows in which a sharp interface or a front separates incompressible fluids of different density and viscosity is described.

2,340 citations

Journal ArticleDOI
TL;DR: The level set method is couple to a wide variety of problems involving external physics, such as compressible and incompressible flow, Stefan problems, kinetic crystal growth, epitaxial growth of thin films, vortex-dominated flows, and extensions to multiphase motion.

2,174 citations

Journal ArticleDOI
TL;DR: In this paper, a front-tracking method for multiphase flows is presented, which is based on writing one set of governing equations for the whole computational domain and treating the different phases as one fluid with variable material properties.

2,011 citations

Journal ArticleDOI
TL;DR: In this paper, the authors consider the formation of droplet clouds or sprays that subsequently burn in combustion chambers, which is caused by interfacial instabilities, such as the Kelvin-Helmholtz instability.
Abstract: The numerical simulation of flows with interfaces and free-surface flows is a vast topic, with applications to domains as varied as environment, geophysics, engineering, and fundamental physics. In engineering, as well as in other disciplines, the study of liquid-gas interfaces is important in combustion problems with liquid and gas reagents. The formation of droplet clouds or sprays that subsequently burn in combustion chambers originates in interfacial instabilities, such as the Kelvin-Helmholtz instability. What can numerical simulations do to improve our understanding of these phenomena? The limitations of numerical techniques make it impossible to consider more than a few droplets or bubbles. They also force us to stay at low Reynolds or Weber numbers, which prevent us from finding a direct solution to the breakup problem. However, these methods are potentially important. First, the continuous improvement of computational power (or, what amounts to the same, the drop in megaflop price) continuously extends the range of affordable problems. Second, and more importantly, the phenomena we consider often happen on scales of space and time where experimental visualization is difficult or impossible. In such cases, numerical simulation may be a useful prod to the intuition of the physicist, the engineer, or the mathematician. A typical example of interfacial flow is the collision between two liquid droplets. Finding the flow involves the study not only of hydrodynamic fields in the air and water phases but also of the air-water interface. This latter part

1,949 citations