scispace - formally typeset
Search or ask a question
Author

Sallie W. Chisholm

Bio: Sallie W. Chisholm is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Prochlorococcus & Synechococcus. The author has an hindex of 94, co-authored 230 publications receiving 36032 citations. Previous affiliations of Sallie W. Chisholm include University of Illinois at Urbana–Champaign & University of Washington.


Papers
More filters
Journal ArticleDOI
TL;DR: Fluorescent oligonucleotide hybridization probes were used to label bacterial cells for analysis by flow cytometry and the intensity of fluorescence was increased additively by the combined use of two or three fluorescent probes complementary to different regions of the same 16S rRNA.
Abstract: Fluorescent oligonucleotide hybridization probes were used to label bacterial cells for analysis by flow cytometry. The probes, complementary to short sequence elements within the 16S rRNA common to phylogenetically coherent assemblages of microorganisms, were labeled with tetramethylrhodamine and hybridized to suspensions of fixed cells. Flow cytometry was used to resolve individual target and nontarget bacteria (1 to 5 microns) via probe-conferred fluorescence. Target cells were quantified in an excess of nontarget cells. The intensity of fluorescence was increased additively by the combined use of two or three fluorescent probes complementary to different regions of the same 16S rRNA. Images

4,110 citations

Journal ArticleDOI
08 Sep 1994-Nature
TL;DR: Findings indicate that iron limitation can control rates of phytoplankton productivity and biomass in the ocean.
Abstract: The idea that iron might limit phytoplankton growth in large regions of the ocean has been tested by enriching an area of 64 km2 in the open equatorial Pacific Ocean with iron This resulted in a doubling of plant biomass, a threefold increase in chlorophyll and a fourfold increase in plant production Similar increases were found in a chlorophyll-rich plume down-stream of the Galapagos Islands, which was naturally enriched in iron These findings indicate that iron limitation can control rates of phytoplankton productivity and biomass in the ocean

1,346 citations

Journal ArticleDOI
27 Jan 2006-Science
TL;DR: Genomic analyses of planktonic microbial communities in the North Pacific Subtropical Gyre, from the ocean's surface to near–sea floor depths, suggested depth-variable community trends in carbon and energy metabolism, attachment and motility, gene mobility, and host-viral interactions.
Abstract: Microbial life predominates in the ocean, yet little is known about its genomic variability, especially along the depth continuum. We report here genomic analyses of planktonic microbial communities in the North Pacific Subtropical Gyre, from the ocean's surface to near-sea floor depths. Sequence variation in microbial community genes reflected vertical zonation of taxonomic groups, functional gene repertoires, and metabolic potential. The distributional patterns of microbial genes suggested depth-variable community trends in carbon and energy metabolism, attachment and motility, gene mobility, and host-viral interactions. Comparative genomic analyses of stratified microbial communities have the potential to provide significant insight into higher-order community organization and dynamics.

1,284 citations

Journal ArticleDOI
28 Aug 2003-Nature
TL;DR: The genomes of two Prochlorococcus strains that span the largest evolutionary distance within the Pro chlorococcus lineage are compared and reveal dynamic genomes that are constantly changing in response to myriad selection pressures.
Abstract: The marine unicellular cyanobacterium Prochlorococcus is the smallest-known oxygen-evolving autotroph1. It numerically dominates the phytoplankton in the tropical and subtropical oceans2,3, and is responsible for a significant fraction of global photosynthesis. Here we compare the genomes of two Prochlorococcus strains that span the largest evolutionary distance within the Prochlorococcus lineage4 and that have different minimum, maximum and optimal light intensities for growth5. The high-light-adapted ecotype has the smallest genome (1,657,990 base pairs, 1,716 genes) of any known oxygenic phototroph, whereas the genome of its low-light-adapted counterpart is significantly larger, at 2,410,873 base pairs (2,275 genes). The comparative architectures of these two strains reveal dynamic genomes that are constantly changing in response to myriad selection pressures. Although the two strains have 1,350 genes in common, a significant number are not shared, and these have been differentially retained from the common ancestor, or acquired through duplication or lateral transfer. Some of these genes have obvious roles in determining the relative fitness of the ecotypes in response to key environmental variables, and hence in regulating their distribution and abundance in the oceans.

1,106 citations

Journal ArticleDOI
01 Jul 1988-Nature
TL;DR: In this paper, a new group of photosynthetic picoplankters was identified, which are extremely abundant, and barely visible using traditional microscopic techniques, reaching concentrations greater than 105 cells ml−1 in the deep euphotic zone.
Abstract: The recent discovery of photosynthetic picoplankton has changed our understanding of marine food webs1. Both prokaryotic2,3 and eukaryotic4,5 species occur in most of the world's oceans and account for a significant proportion of global productivity6. Using shipboard flow cytometry, we have identified a new group of picoplankters which are extremely abundant, and barely visible using traditional microscopic techniques. These cells are smaller than the coccoid cyanobacteria and reach concentrations greater than 105 cells ml–1 in the deep euphotic zone. They fluoresce red and contain a divinyl chlorophyll a-like pigment, as well as chlorophyll b, α-carotene, and zeaxanthin. This unusual combination of pigments, and a distinctive prokaryotic ultrastructure, suggests that these picoplankters are free-living relatives of Prochloron7. They differ from previously reported prochlorophytes—the putative ancestors of the chloroplasts of higher plants—in that they contain α-carotene rather than β-carotene and contain a divinyl chlorophyll a-like pigment as the dominant chlorophyll.

1,081 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies.
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V−SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online (http://bioinf.spbau.ru/spades). It is distributed as open source software.

16,859 citations

Journal ArticleDOI
TL;DR: Analysis of the genomic DNA from a bacterial biofilm grown under aerobic conditions suggests that sulfate-reducing bacteria, despite their anaerobicity, were present in this environment.
Abstract: We describe a new molecular approach to analyzing the genetic diversity of complex microbial populations. This technique is based on the separation of polymerase chain reaction-amplified fragments of genes coding for 16S rRNA, all the same length, by denaturing gradient gel electrophoresis (DGGE). DGGE analysis of different microbial communities demonstrated the presence of up to 10 distinguishable bands in the separation pattern, which were most likely derived from as many different species constituting these populations, and thereby generated a DGGE profile of the populations. We showed that it is possible to identify constituents which represent only 1% of the total population. With an oligonucleotide probe specific for the V3 region of 16S rRNA of sulfate-reducing bacteria, particular DNA fragments from some of the microbial populations could be identified by hybridization analysis. Analysis of the genomic DNA from a bacterial biofilm grown under aerobic conditions suggests that sulfate-reducing bacteria, despite their anaerobicity, were present in this environment. The results we obtained demonstrate that this technique will contribute to our understanding of the genetic diversity of uncharacterized microbial populations.

11,380 citations

Journal ArticleDOI
21 Dec 2006-Nature
TL;DR: It is demonstrated through metagenomic and biochemical analyses that changes in the relative abundance of the Bacteroidetes and Firmicutes affect the metabolic potential of the mouse gut microbiota and indicates that the obese microbiome has an increased capacity to harvest energy from the diet.
Abstract: The worldwide obesity epidemic is stimulating efforts to identify host and environmental factors that affect energy balance. Comparisons of the distal gut microbiota of genetically obese mice and their lean littermates, as well as those of obese and lean human volunteers have revealed that obesity is associated with changes in the relative abundance of the two dominant bacterial divisions, the Bacteroidetes and the Firmicutes. Here we demonstrate through metagenomic and biochemical analyses that these changes affect the metabolic potential of the mouse gut microbiota. Our results indicate that the obese microbiome has an increased capacity to harvest energy from the diet. Furthermore, this trait is transmissible: colonization of germ-free mice with an 'obese microbiota' results in a significantly greater increase in total body fat than colonization with a 'lean microbiota'. These results identify the gut microbiota as an additional contributing factor to the pathophysiology of obesity.

10,126 citations

01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations