scispace - formally typeset
Search or ask a question
Author

Salvador García

Bio: Salvador García is an academic researcher from University of Granada. The author has contributed to research in topics: Evolutionary algorithm & k-nearest neighbors algorithm. The author has an hindex of 51, co-authored 180 publications receiving 20281 citations. Previous affiliations of Salvador García include University of Jaén & King Abdulaziz University.


Papers
More filters
Journal ArticleDOI
TL;DR: The basics are discussed and a survey of a complete set of nonparametric procedures developed to perform both pairwise and multiple comparisons, for multi-problem analysis are given.
Abstract: a b s t r a c t The interest in nonparametric statistical analysis has grown recently in the field of computational intelligence. In many experimental studies, the lack of the required properties for a proper application of parametric procedures - independence, normality, and homoscedasticity - yields to nonparametric ones the task of performing a rigorous comparison among algorithms. In this paper, we will discuss the basics and give a survey of a complete set of nonparametric procedures developed to perform both pairwise and multiple comparisons, for multi-problem analysis. The test problems of the CEC'2005 special session on real parameter optimization will help to illustrate the use of the tests throughout this tutorial, analyzing the results of a set of well-known evolutionary and swarm intelligence algorithms. This tutorial is concluded with a compilation of considerations and recommendations, which will guide practitioners when using these tests to contrast their experimental results.

3,832 citations

Journal ArticleDOI
TL;DR: In this paper, a taxonomy of recent contributions related to explainability of different machine learning models, including those aimed at explaining Deep Learning methods, is presented, and a second dedicated taxonomy is built and examined in detail.

2,827 citations

Proceedings Article
01 Jan 2011
TL;DR: The aim of this paper is to present three new aspects of KEEL: KEEL-dataset, a data set repository which includes the data set partitions in theKEELformat and some guidelines for including new algorithms in KEEL, helping the researcher to compare the results of many approaches already included within the KEEL software.
Abstract: (Knowledge Extraction based onEvolutionary Learning) tool, an open source software that supports datamanagement and a designer of experiments. KEEL pays special attentionto the implementation of evolutionary learning and soft computing basedtechniques for Data Mining problems including regression, classification,clustering, pattern mining and so on.The aim of this paper is to present three new aspects of KEEL: KEEL-dataset, a data set repository which includes the data set partitions in theKEELformatandshowssomeresultsofalgorithmsinthesedatasets; someguidelines for including new algorithms in KEEL, helping the researcherstomaketheirmethodseasilyaccessibletootherauthorsandtocomparetheresults of many approaches already included within the KEEL software;and a module of statistical procedures developed in order to provide to theresearcher a suitable tool to contrast the results obtained in any experimen-talstudy.Acaseofstudyisgiventoillustrateacompletecaseofapplicationwithin this experimental analysis framework.

2,057 citations

Journal ArticleDOI
TL;DR: This paper focuses on the use of nonparametric statistical inference for analyzing the results obtained in an experiment design in the field of computational intelligence, and presents a case study which involves a set of techniques in classification tasks.

1,737 citations

Posted Content
TL;DR: Previous efforts to define explainability in Machine Learning are summarized, establishing a novel definition that covers prior conceptual propositions with a major focus on the audience for which explainability is sought, and a taxonomy of recent contributions related to the explainability of different Machine Learning models are proposed.
Abstract: In the last years, Artificial Intelligence (AI) has achieved a notable momentum that may deliver the best of expectations over many application sectors across the field. For this to occur, the entire community stands in front of the barrier of explainability, an inherent problem of AI techniques brought by sub-symbolism (e.g. ensembles or Deep Neural Networks) that were not present in the last hype of AI. Paradigms underlying this problem fall within the so-called eXplainable AI (XAI) field, which is acknowledged as a crucial feature for the practical deployment of AI models. This overview examines the existing literature in the field of XAI, including a prospect toward what is yet to be reached. We summarize previous efforts to define explainability in Machine Learning, establishing a novel definition that covers prior conceptual propositions with a major focus on the audience for which explainability is sought. We then propose and discuss about a taxonomy of recent contributions related to the explainability of different Machine Learning models, including those aimed at Deep Learning methods for which a second taxonomy is built. This literature analysis serves as the background for a series of challenges faced by XAI, such as the crossroads between data fusion and explainability. Our prospects lead toward the concept of Responsible Artificial Intelligence, namely, a methodology for the large-scale implementation of AI methods in real organizations with fairness, model explainability and accountability at its core. Our ultimate goal is to provide newcomers to XAI with a reference material in order to stimulate future research advances, but also to encourage experts and professionals from other disciplines to embrace the benefits of AI in their activity sectors, without any prior bias for its lack of interpretability.

1,602 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

01 Jan 2002

9,314 citations