scispace - formally typeset
Search or ask a question
Author

Salvador Olmos

Other affiliations: St. Jude Medical, Lund University
Bio: Salvador Olmos is an academic researcher from University of Zaragoza. The author has contributed to research in topics: QRS complex & Least mean squares filter. The author has an hindex of 26, co-authored 71 publications receiving 3232 citations. Previous affiliations of Salvador Olmos include St. Jude Medical & Lund University.


Papers
More filters
Journal ArticleDOI
TL;DR: A robust single-lead electrocardiogram (ECG) delineation system based on the wavelet transform (WT), outperforming the results of other well known algorithms, especially in determining the end of T wave.
Abstract: In this paper, we developed and evaluated a robust single-lead electrocardiogram (ECG) delineation system based on the wavelet transform (WT). In a first step, QRS complexes are detected. Then, each QRS is delineated by detecting and identifying the peaks of the individual waves, as well as the complex onset and end. Finally, the determination of P and T wave peaks, onsets and ends is performed. We evaluated the algorithm on several manually annotated databases, such as MIT-BIH Arrhythmia, QT, European ST-T and CSE databases, developed for validation purposes. The QRS detector obtained a sensitivity of Se=99.66% and a positive predictivity of P+=99.56% over the first lead of the validation databases (more than 980,000 beats), while for the well-known MIT-BIH Arrhythmia Database, Se and P+ over 99.8% were attained. As for the delineation of the ECG waves, the mean and standard deviation of the differences between the automatic and manual annotations were computed. The mean error obtained with the WT approach was found not to exceed one sampling interval, while the standard deviations were around the accepted tolerances between expert physicians, outperforming the results of other well known algorithms, especially in determining the end of T wave.

1,490 citations

Journal ArticleDOI
TL;DR: A unified framework is proposed which holds the existing T wave alternans analysis methods and the methodological principles of the published TWA analysis schemes are compared and discussed.
Abstract: Visible T wave alternans (TWA) in the electrocardiogram (ECG) had been regarded as an infrequent phenomenon during the first 80 years of electrocardiography. Nevertheless, computerized analysis changed this perception. In the last two decades, a variety of techniques for automatic TWA analysis have been proposed. These techniques have allowed researchers to detect nonvisible TWA in a wide variety of clinical and experimental conditions. Such studies have recently shown that TWA is related to cardiac instability and increased arrhythmogenicity. Comparison of TWA analysis methods is a difficult task due to the diversity of approaches. In this paper, we propose a unified framework which holds the existing methods. In the light of this framework, the methodological principles of the published TWA analysis schemes are compared and discussed. This framework may have an important role to develop new approaches to this problem.

215 citations

Journal ArticleDOI
TL;DR: Plasma amyloid β (Aβ) peptides have been previously studied as candidate biomarkers to increase recruitment efficiency in secondary prevention clinical trials for Alzheimer's disease.

123 citations

Journal ArticleDOI
TL;DR: An Adaptive Hermite Model Estimation System (AHMES) is presented for on-line beat-to-beat estimation of the features that describe the QRS complex with the Hermite model, and an application is shown, for subsequent classification, of the AHMES in extracting theQRS features of an ECG signal with the bigeminy phenomena.
Abstract: The most characteristic wave set in ECG signals is the QRS complex. Automatic procedures to classify the QRS are very useful in the diagnosis of cardiac dysfunctions. Early detection and classification of QRS changes are important in real-time monitoring. ECG data compression is also important for storage and data transmission. An Adaptive Hermite Model Estimation System (AHMES) is presented for on-line beat-to-beat estimation of the features that describe the QRS complex with the Hermite model. The AHMES is based on the multiple-input adaptive linear combiner, using as inputs the succession of the QRS complexes and the Hermite functions, where a procedure has been incorporated to adaptively estimate a width related parameter b. The system allows an efficient real-time parameter extraction for classification and data compression. The performance of the AHMES is compared with that of direct feature estimation, studying the improvement in signal-to-noise ratio. In addition, the effect of misalignment at the QRS mark is shown to become a neglecting low-pass effect. The results allow the conditions in which the AHMES improves the direct estimate to be established. The application is shown, for subsequent classification, of the AHMES in extracting the QRS features of an ECG signal with the bigeminy phenomena. Another application is highlighted that helps wide ectopic beats detection using the width parameter b.

114 citations

Journal ArticleDOI
TL;DR: The stationary parameterization is included for diffeomorphic registration in the LDDMM framework and the variational problem related to this registration scenario is formulated and the associated Euler-Lagrange equations are derived.
Abstract: Computational Anatomy aims for the study of variability in anatomical structures from images. Variability is encoded by the spatial transformations existing between anatomical images and a template selected as reference. In the absence of a more justified model for inter-subject variability, transformations are considered to belong to a convenient family of diffeomorphisms which provides a suitable mathematical setting for the analysis of anatomical variability. One of the proposed paradigms for diffeomorphic registration is the Large Deformation Diffeomorphic Metric Mapping (LDDMM). In this framework, transformations are characterized as end points of paths parameterized by time-varying flows of vector fields defined on the tangent space of a Riemannian manifold of diffeomorphisms and computed from the solution of the non-stationary transport equation associated to these flows. With this characterization, optimization in LDDMM is performed on the space of non-stationary vector field flows resulting into a time and memory consuming algorithm. Recently, an alternative characterization of paths of diffeomorphisms based on constant-time flows of vector fields has been proposed in the literature. With this parameterization, diffeomorphisms constitute solutions of stationary ODEs. In this article, the stationary parameterization is included for diffeomorphic registration in the LDDMM framework. We formulate the variational problem related to this registration scenario and derive the associated Euler-Lagrange equations. Moreover, the performance of the non-stationary vs the stationary parameterizations in real and simulated 3D-MRI brain datasets is evaluated. Compared to the non-stationary parameterization, our proposal provides similar results in terms of image matching and local differences between the diffeomorphic transformations while drastically reducing memory and time requirements.

103 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: These guidelines are a revision of the 1995 standards of the AHA that addressed the issues of exercise testing and training and current issues of practical importance in the clinical use of these standards are considered.
Abstract: The purpose of this report is to provide revised standards and guidelines for the exercise testing and training of individuals who are free from clinical manifestations of cardiovascular disease and those with known cardiovascular disease. These guidelines are intended for physicians, nurses, exercise physiologists, specialists, technologists, and other healthcare professionals involved in exercise testing and training of these populations. This report is in accord with the “Statement on Exercise” published by the American Heart Association (AHA).1 These guidelines are a revision of the 1995 standards of the AHA that addressed the issues of exercise testing and training.2 An update of background, scientific rationale, and selected references is provided, and current issues of practical importance in the clinical use of these standards are considered. These guidelines are in accord with the American College of Cardiology (ACC)/AHA Guidelines for Exercise Testing.3 ### The Cardiovascular Response to Exercise Exercise, a common physiological stress, can elicit cardiovascular abnormalities that are not present at rest, and it can be used to determine the adequacy of cardiac function. Because exercise is only one of many stresses to which humans can be exposed, it is more appropriate to call an exercise test exactly that and not a “stress test.” This is particularly relevant considering the increased use of nonexercise stress tests. ### Types of Exercise Three types of muscular contraction or exercise can be applied as a stress to the cardiovascular system: isometric (static), isotonic (dynamic or locomotory), and resistance (a combination of isometric and isotonic).4,5 Isotonic exercise, which is defined as a muscular contraction resulting in movement, primarily provides a volume load to the left ventricle, and the response is proportional to the size of the working muscle mass and the intensity of exercise. Isometric exercise is defined as a muscular contraction without movement (eg, handgrip) and imposes greater pressure than volume …

2,964 citations

Journal ArticleDOI
TL;DR: A fully-automated segmentation method that uses manually labelled image data to provide anatomical training information and is assessed both quantitatively, using Leave-One-Out testing on the 336 training images, and qualitatively,Using an independent clinical dataset involving Alzheimer's disease.

2,047 citations

21 Jun 2010

1,966 citations