scispace - formally typeset
Search or ask a question
Author

Salvador Villarreal-Reyes

Bio: Salvador Villarreal-Reyes is an academic researcher from Ensenada Center for Scientific Research and Higher Education. The author has contributed to research in topics: Pulse-position modulation & Time-hopping. The author has an hindex of 6, co-authored 24 publications receiving 118 citations. Previous affiliations of Salvador Villarreal-Reyes include Loughborough University & University of Sheffield.

Papers
More filters
Journal ArticleDOI
13 Aug 2021-PLOS ONE
TL;DR: In this paper, the performance of deep learning techniques for detecting COVID-19 infections from lung ultrasound imagery was evaluated and compared with different pre-trained deep learning architectures, including VGG19, InceptionV3, Xception, and ResNet50.
Abstract: Background The COVID-19 pandemic has exposed the vulnerability of healthcare services worldwide, especially in underdeveloped countries. There is a clear need to develop novel computer-assisted diagnosis tools to provide rapid and cost-effective screening in places where massive traditional testing is not feasible. Lung ultrasound is a portable, easy to disinfect, low cost and non-invasive tool that can be used to identify lung diseases. Computer-assisted analysis of lung ultrasound imagery is a relatively recent approach that has shown great potential for diagnosing pulmonary conditions, being a viable alternative for screening and diagnosing COVID-19. Objective To evaluate and compare the performance of deep-learning techniques for detecting COVID-19 infections from lung ultrasound imagery. Methods We adapted different pre-trained deep learning architectures, including VGG19, InceptionV3, Xception, and ResNet50. We used the publicly available POCUS dataset comprising 3326 lung ultrasound frames of healthy, COVID-19, and pneumonia patients for training and fine-tuning. We conducted two experiments considering three classes (COVID-19, pneumonia, and healthy) and two classes (COVID-19 versus pneumonia and COVID-19 versus non-COVID-19) of predictive models. The obtained results were also compared with the POCOVID-net model. For performance evaluation, we calculated per-class classification metrics (Precision, Recall, and F1-score) and overall metrics (Accuracy, Balanced Accuracy, and Area Under the Receiver Operating Characteristic Curve). Lastly, we performed a statistical analysis of performance results using ANOVA and Friedman tests followed by post-hoc analysis using the Wilcoxon signed-rank test with the Holm's step-down correction. Results InceptionV3 network achieved the best average accuracy (89.1%), balanced accuracy (89.3%), and area under the receiver operating curve (97.1%) for COVID-19 detection from bacterial pneumonia and healthy lung ultrasound data. The ANOVA and Friedman tests found statistically significant performance differences between models for accuracy, balanced accuracy and area under the receiver operating curve. Post-hoc analysis showed statistically significant differences between the performance obtained with the InceptionV3-based model and POCOVID-net, VGG19-, and ResNet50-based models. No statistically significant differences were found in the performance obtained with InceptionV3- and Xception-based models. Conclusions Deep learning techniques for computer-assisted analysis of lung ultrasound imagery provide a promising avenue for COVID-19 screening and diagnosis. Particularly, we found that the InceptionV3 network provides the most promising predictive results from all AI-based techniques evaluated in this work. InceptionV3- and Xception-based models can be used to further develop a viable computer-assisted screening tool for COVID-19 based on ultrasound imagery.

50 citations

Journal ArticleDOI
TL;DR: This paper presents the design, development, and implementation of an architectural model to create, on-demand, edge-fog-cloud processing structures to continuously handle big health data and, at the same time, to execute services for fulfilling NFRs.
Abstract: The edge, the fog, the cloud, and even the end-user’s devices play a key role in the management of the health sensitive content/data lifecycle However, the creation and management of solutions including multiple applications executed by multiple users in multiple environments (edge, the fog, and the cloud) to process multiple health repositories that, at the same time, fulfilling non-functional requirements (NFRs) represents a complex challenge for health care organizations This paper presents the design, development, and implementation of an architectural model to create, on-demand, edge-fog-cloud processing structures to continuously handle big health data and, at the same time, to execute services for fulfilling NFRs In this model, constructive and modular $blocks$ , implemented as microservices and nanoservices, are recursively interconnected to create edge-fog-cloud processing structures as infrastructure-agnostic services Continuity schemes create dataflows through the blocks of edge-fog-cloud structures and enforce, in an implicit manner, the fulfillment of NFRs for data arriving and departing to/from each block of each edge-fog-cloud structure To show the feasibility of this model, a prototype was built using this model, which was evaluated in a case study based on the processing of health data for supporting critical decision-making procedures in remote patient monitoring This study considered scenarios where end-users and medical staff received insights discovered when processing electrocardiograms (ECGs) produced by sensors in wireless IoT devices as well as where physicians received patient records (spirometry studies, ECGs and tomography images) and warnings raised when online analyzing and identifying anomalies in the analyzed ECG data A scenario where organizations manage multiple simultaneous each edge-fog-cloud structure for processing of health data and contents delivered to internal and external staff was also studied The evaluation of these scenarios showed the feasibility of applying this model to the building of solutions interconnecting multiple services/applications managing big health data through different environments

30 citations

Journal ArticleDOI
24 Oct 2012-Sensors
TL;DR: A reliable freestanding position-based routing algorithm (FPBR) for highway scenarios is proposed and performance metrics show that FPBR yields similar results when considering freespace propagation conditions, and outperforms the leading protocol when considering a realistic highway path loss model.
Abstract: Vehicular Ad Hoc Networks (VANETs) are considered by car manufacturers and the research community as the enabling technology to radically improve the safety, efficiency and comfort of everyday driving. However, before VANET technology can fulfill all its expected potential, several difficulties must be addressed. One key issue arising when working with VANETs is the complexity of the networking protocols compared to those used by traditional infrastructure networks. Therefore, proper design of the routing strategy becomes a main issue for the effective deployment of VANETs. In this paper, a reliable freestanding position-based routing algorithm (FPBR) for highway scenarios is proposed. For this scenario, several important issues such as the high mobility of vehicles and the propagation conditions may affect the performance of the routing strategy. These constraints have only been partially addressed in previous proposals. In contrast, the design approach used for developing FPBR considered the constraints imposed by a highway scenario and implements mechanisms to overcome them. FPBR performance is compared to one of the leading protocols for highway scenarios. Performance metrics show that FPBR yields similar results when considering freespace propagation conditions, and outperforms the leading protocol when considering a realistic highway path loss model.

19 citations

Journal ArticleDOI
TL;DR: Security issues and proposed solutions related to three main security concerns associated with the message dissemination process in vehicular ad hoc networks: network access, data consistency, and broadcast protocols are introduced.
Abstract: Vehicular ad hoc networks have been identified as a key technology for enabling safety and infotainment applications in the context of smart and connected vehicles. In this sense, diverse approaches of multi-hop broadcast protocols have been proposed to collect and disseminate context information through the network. However, before vehicular ad hoc networks applications fulfill their expected potential to connect smart vehicles, several issues must be addressed. Among these issues, those related to security are of particular importance. In this article, the main security issues of broadcast message dissemination in vehicular ad hoc networks are discussed. Moreover, a review of the most relevant threats and proposed solutions to secure broadcast message dissemination in vehicular ad hoc networks is presented and discussed. As mentioned, security is an important topic which has not been fully addressed in vehicular ad hoc networks; therefore, the aim of this article is to introduce security issues and prop...

15 citations

Journal ArticleDOI
TL;DR: A method for the spectral analysis of convolutionally coded Markov-driven impulse radio (IR)-based ultrawideband (UWB) systems is introduced, providing a spectral-line-free PSD for quaternary biorthogonal (PAM/PPM) modulation IR UWB systems.
Abstract: A method for the spectral analysis of convolutionally coded Markov-driven impulse radio (IR)-based ultrawideband (UWB) systems is introduced. Example applications in UWB systems include the study of pulse position modulation (PPM), pulse-amplitude modulation (PAM), biorthogonal modulation, and pulse-shape modulation combined with periodic (e.g., pseudorandom)/random time-hopping (TH), as well as periodic/random direct-sequence (DS) multiplication. The effects of random jitter and pulse attenuation are considered in this analysis. The final result allows simple examination of the power spectral density (PSD) of such signals. This result clearly delimitates the relative contributions of parameters that allow enhanced design of UWB systems. Application examples are presented for a new convolutional encoder, providing a spectral-line-free PSD for quaternary biorthogonal (PAM/PPM) modulation IR UWB systems.

13 citations


Cited by
More filters
01 Jan 2004
TL;DR: In this paper, robust decentralized model predictive control (DMPC) for a team of cooperating uninhabited aerial vehicles (UAVs) is implemented. But the authors focus on the non-convex problem of path-planning subject to avoidance constraints.
Abstract: This paper implements robust decentralized model predictive control (DMPC) for a team of cooperating uninhabited aerial vehicles (UAVs). The problem involves vehicles with independent dynamics but with coupled constraints to capture required cooperative behavior. Using a recently-developed form of DMPC, each vehicle plans only for its own actions, but feasibility of the sub-problems and satisfaction of the coupling constraints are guaranteed throughout, despite the action of unknown but bounded disturbances. UAVs communicate relevant plan data to ensure that decisions are consistent across the team. Collision avoidance is used as an example of coupled constraints and the paper shows how the speed, turn rate and avoidance distance limits in the optimization should be modified in order to guarantee robust constraint satisfaction. Integer programming is used to solve the non-convex problem of path-planning subject to avoidance constraints. Numerical simulations compare computation time and target arrival time under decentralized and centralized control and investigate the impact of decentralization on team performance. The results show that the computation required for DMPC is significantly lower than for its centralized counterpart and scales better with the size of the team, at the expense of only a small increase in UAV flight times.

201 citations

Journal ArticleDOI
TL;DR: It is found that the community has some technological readiness but inequity was observed for human resource readiness and technological capabilities, and the study population is motivated to use mHealth.

86 citations

Journal ArticleDOI
28 Apr 2016-Sensors
TL;DR: To simulate and evaluate the proposed traffic congestion detection system, a big data cluster was developed based on Cassandra, which was used in tandem with the OMNeT++ discreet event network simulator, coupled with the SUMO (Simulation of Urban MObility) traffic simulator and the Veins vehicular network framework.
Abstract: This article discusses the simulation and evaluation of a traffic congestion detection system which combines inter-vehicular communications, fixed roadside infrastructure and infrastructure-to-infrastructure connectivity and big data. The system discussed in this article permits drivers to identify traffic congestion and change their routes accordingly, thus reducing the total emissions of CO2 and decreasing travel time. This system monitors, processes and stores large amounts of data, which can detect traffic congestion in a precise way by means of a series of algorithms that reduces localized vehicular emission by rerouting vehicles. To simulate and evaluate the proposed system, a big data cluster was developed based on Cassandra, which was used in tandem with the OMNeT++ discreet event network simulator, coupled with the SUMO (Simulation of Urban MObility) traffic simulator and the Veins vehicular network framework. The results validate the efficiency of the traffic detection system and its positive impact in detecting, reporting and rerouting traffic when traffic events occur.

71 citations