scispace - formally typeset
Search or ask a question
Author

Sam Tone Tor

Bio: Sam Tone Tor is an academic researcher. The author has contributed to research in topics: Wafer & Semiconductor. The author has an hindex of 3, co-authored 4 publications receiving 101 citations.

Papers
More filters
Patent
05 Aug 2011
TL;DR: In this paper, a backplane for back contact solar cells that provides for solar cell substrate reinforcement and electrical interconnects is described, which comprises depositing an inter-digitated pattern of base electrodes and emitter electrodes on a backside surface of a semiconductor substrate, forming electrically conductive emitter plugs and base plugs on the inter-determined pattern, and attaching a second backplane having a second inter-decomposition pattern of EB electrodes and EB electrodes at the conductive EB and EB plugs.
Abstract: Fabrication methods and structures relating to backplanes for back contact solar cells that provide for solar cell substrate reinforcement and electrical interconnects are described. The method comprises depositing an interdigitated pattern of base electrodes and emitter electrodes on a backside surface of a semiconductor substrate, forming electrically conductive emitter plugs and base plugs on the interdigitated pattern, and attaching a backplane having a second interdigitated pattern of base electrodes and emitter electrodes at the conductive emitter and base plugs to form electrical interconnects.

63 citations

Patent
29 Jun 2010
TL;DR: In this article, the authors present a method for releasing a thin-film semiconductor substrate from a reusable template, which involves forming a mechanically weak layer conformally on a semiconductor template.
Abstract: The present disclosure relates to methods and apparatuses for releasing a thin semiconductor substrate from a reusable template. The method involves forming a mechanically weak layer conformally on a semiconductor template. Then forming a thin semiconductor substrate conformally on the mechanically weak layer. The thin semiconductor substrate, the mechanically weak layer and the template forming a wafer. Then defining the border of the thin-film semiconductor substrate to be released by exposing the peripheral of the mechanically weak layer. Then releasing the thin-film semiconductor substrate by applying a controlled air flow parallel to said mechanically weak layer wherein the controlled air flow separates the thin semiconductor substrate and template according to lifting forces.

22 citations

Patent
13 Aug 2011
TL;DR: In this article, a semiconductor wafer is repeatedly used as a template and carrier for fabricating high efficiency capable thin semiconductor solar cells substrates, and mechanisms that enable repeated use of these templates at consistent quality and with high yield are disclosed.
Abstract: Mechanisms are disclosed by which a semiconductor wafer, silicon in some embodiments, is repeatedly used to serve as a template and carrier for fabricating high efficiency capable thin semiconductor solar cells substrates. Mechanisms that enable such repeated use of these templates at consistent quality and with high yield are disclosed.

16 citations

Patent
03 May 2012
TL;DR: In this paper, a bottom vacuum chamber is used to separate a semiconductor substrate from a template in an enclosed pressure chamber with at least one gas inlet and one gas outlet, allowing gas flowing through the gap to generate lifting forces on the attached substrate and template.
Abstract: According to one embodiment, a releasing apparatus for separating a semiconductor substrate from a semiconductor template, the releasing apparatus having an enclosed pressure chamber having at least one gas inlet and at least one gas outlet. A top vacuum chuck for securing a released semiconductor substrate or semiconductor template in the enclosed pressure chamber. A bottom vacuum chuck for securing an attached semiconductor substrate and semiconductor template in the enclosed pressure chamber. A gap between the attached semiconductor substrate and semiconductor template and the top vacuum chuck allowing gas flowing through the gap to generate lifting forces on the attached semiconductor substrate and semiconductor template.

Cited by
More filters
Patent
19 Dec 2014
TL;DR: A high efficiency configuration for a solar cell module comprises solar cells arranged in a shingled manner to form super cells, which may be arranged to efficiently use the area of the solar module, reduce series resistance, and increase module efficiency as mentioned in this paper.
Abstract: A high efficiency configuration for a solar cell module comprises solar cells arranged in a shingled manner to form super cells, which may be arranged to efficiently use the area of the solar module, reduce series resistance, and increase module efficiency.

164 citations

Patent
05 Aug 2011
TL;DR: In this paper, a backplane for back contact solar cells that provides for solar cell substrate reinforcement and electrical interconnects is described, which comprises depositing an inter-digitated pattern of base electrodes and emitter electrodes on a backside surface of a semiconductor substrate, forming electrically conductive emitter plugs and base plugs on the inter-determined pattern, and attaching a second backplane having a second inter-decomposition pattern of EB electrodes and EB electrodes at the conductive EB and EB plugs.
Abstract: Fabrication methods and structures relating to backplanes for back contact solar cells that provide for solar cell substrate reinforcement and electrical interconnects are described. The method comprises depositing an interdigitated pattern of base electrodes and emitter electrodes on a backside surface of a semiconductor substrate, forming electrically conductive emitter plugs and base plugs on the interdigitated pattern, and attaching a backplane having a second interdigitated pattern of base electrodes and emitter electrodes at the conductive emitter and base plugs to form electrical interconnects.

63 citations

Patent
23 Feb 2015
TL;DR: In this article, a solar cell module is provided, which includes a substrate, a plurality of unit cells including a first electrode, a semiconductor layer, and a second electrode that are sequentially deposited on the substrate.
Abstract: A solar cell module is provided. The solar cell module includes: a substrate; a plurality of unit cells including a first electrode, a semiconductor layer, and a second electrode that are sequentially deposited on the substrate; a first sub-module and a second sub-module having the unit cells, respectively; a first longitudinal pattern dividing the unit cells of the first sub-module, and a second longitudinal pattern dividing the unit cells of the second sub-module; a transverse pattern dividing the first sub-module and the second sub-module; and an insulating portion disposed near the transverse pattern, and insulating between the first sub-module and the second sub-module, wherein the unit cells of the first sub-module are connected in series through the first longitudinal pattern, the unit cells of the second sub-module are connected in series through the second longitudinal pattern, and the first sub-module and the second sub-module are connected in series through the transverse pattern.

56 citations

Patent
02 Jun 2015
TL;DR: In this paper, a photovoltaic (PV) module cleaning system can include a robotic cleaning device and a support system, which can be configured to provide a metered fill to the robotic cleaning devices.
Abstract: A photovoltaic (PV) module cleaning system can include a robotic cleaning device and a support system. The support system can be configured to provide a metered fill to the robotic cleaning device. In some embodiments, the robotic cleaning device and include a curved cleaning head. Various techniques for deploying a robotic cleaning device on PV modules include out-and-back, leapfrog, among others.

54 citations

Patent
27 May 2011
TL;DR: In this article, laser processing schemes for producing various types of hetero-junction and homojunction solar cells are disclosed for producing different types of solar cells, such as base and emitter contact opening, selective doping, and metal ablation.
Abstract: Laser processing schemes are disclosed for producing various types of hetero-junction and homo-junction solar cells. The methods include base and emitter contact opening, selective doping, and metal ablation. Also, laser processing schemes are disclosed that are suitable for selective amorphous silicon ablation and selective doping for hetero-junction solar cells. These laser processing techniques may be applied to semiconductor substrates, including crystalline silicon substrates, and further including crystalline silicon substrates which are manufactured either through wire saw wafering methods or via epitaxial deposition processes, that are either planar or textured/three-dimensional. These techniques are highly suited to thin crystalline semiconductor, including thin crystalline silicon films.

45 citations