scispace - formally typeset
Search or ask a question
Author

Saman A. Gorji

Bio: Saman A. Gorji is an academic researcher from Queensland University of Technology. The author has contributed to research in topics: Converters & Flyback converter. The author has an hindex of 10, co-authored 22 publications receiving 983 citations. Previous affiliations of Saman A. Gorji include Swinburne University of Technology.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors comprehensively review and classify various step-up dc-dc converters based on their characteristics and voltage-boosting techniques, and discuss the advantages and disadvantages of these voltage boosting techniques and associated converters.
Abstract: DC–DC converters with voltage boost capability are widely used in a large number of power conversion applications, from fraction-of-volt to tens of thousands of volts at power levels from milliwatts to megawatts. The literature has reported on various voltage-boosting techniques, in which fundamental energy storing elements (inductors and capacitors) and/or transformers in conjunction with switch(es) and diode(s) are utilized in the circuit. These techniques include switched capacitor (charge pump), voltage multiplier, switched inductor/voltage lift, magnetic coupling, and multistage/-level, and each has its own merits and demerits depending on application, in terms of cost, complexity, power density, reliability, and efficiency. To meet the growing demand for such applications, new power converter topologies that use the above voltage-boosting techniques, as well as some active and passive components, are continuously being proposed. The permutations and combinations of the various voltage-boosting techniques with additional components in a circuit allow for numerous new topologies and configurations, which are often confusing and difficult to follow. Therefore, to present a clear picture on the general law and framework of the development of next-generation step-up dc–dc converters, this paper aims to comprehensively review and classify various step-up dc–dc converters based on their characteristics and voltage-boosting techniques. In addition, the advantages and disadvantages of these voltage-boosting techniques and associated converters are discussed in detail. Finally, broad applications of dc–dc converters are presented and summarized with comparative study of different voltage-boosting techniques.

1,230 citations

Journal ArticleDOI
TL;DR: The features of each topology and control scheme along with their typical applications are discussed, in order to provide a ground of comparison for realizing new configurations or finding the appropriate converter for the specific application.
Abstract: Bidirectional DC-DC power converters are increasingly employed in diverse applications whereby power flow in both forward and reverse directions are required. These include but not limited to energy storage systems, uninterruptable power supplies, electric vehicles, and renewable energy systems, to name a few. This paper aims to review these converters from the point of view of topology as well as control schemes. From the point of view of topology, these converters are divided into two main categories, namely non-isolated and isolated configurations. Each category is divided into eight groups along with their respective schematics and a table of summary. Furthermore, the common control schemes and switching strategies for these converters are also reviewed. Some of the control schemes are typically applied to all DC-DC power converters such as PID, sliding mode, fuzzy, model predictive, digital control, etc. In this context, it should be noted that some switching strategies were designed specifically for isolated bidirectional DC-DC converters in order to improve their performance such as single phase shift, dual phase shift, triple phase shift, etc. The features of each topology and control scheme along with their typical applications are discussed, in order to provide a ground of comparison for realizing new configurations or finding the appropriate converter for the specific application.

170 citations

Journal ArticleDOI
TL;DR: A new transformer-less buck-boost converter, which owns a quadratic voltage gain ratio and the count of power switches, is proposed, which works both in step-up or step-down mode, while most of the existing Quadratic topologies are able to work either in step up or step down mode.
Abstract: A new transformer-less buck-boost converter is proposed, which owns a quadratic voltage gain ratio. The proposed converter (a) has only one active switch, which makes the implementation of the gate driver and control system simpler; (b) has a quadratic voltage gain without using a transformer, which equips the designers to obtain a high-voltage gain ratio and avoid the complexity of magnetic utilisations; (c) works both in step-up or step-down mode, while most of the existing quadratic topologies are able to work either in step-up or step-down mode; and (d) shares a common ground between the input and output terminals. The operating states of the proposed converter along with its steady-state performance are analysed. Then, the small-signal modelling and the power loss analysis are performed. A comparison shows the unique features of the converter, specifically in terms of voltage gain ratio and the count of power switches. Finally, the experimental results of a laboratory prototype, as well as the simulation results from PSIM software, are used for validation. The converter was tested in different conditions to inspect its transient response and to record its efficiency. The maximum recorded efficiencies in boost and buck modes, respectively were 94.7 and 93%.

69 citations

Journal ArticleDOI
TL;DR: It is concluded that those MPPT schemes deploying the measured external variables would be able to track the global maximum power point with high reliability; however, their implementation cost and applicability remains as a challenge due to increasing the sensor deployment cost and complexity.
Abstract: Maximum power point tracking (MPPT) techniques have been vastly researched and developed in order to obtain the maximum terminal power of photovoltaic (PV) arrays in the solar renewable energy system. The aim of this paper is to present a new principal scheme-based review of the categorised MPPT methods (conventional, novel, and hybrid) with respect to the deployment of their input variables (solar irradiance, PV arrays’ temperature, and PV arrays’ terminal voltage and current), where MPPT methods are categorised to six different schemes. For each scheme, previous MPPT studies are extracted from literature and analysed. Then the critical benefits and limitations of the six presented MPPT schemes are compared and discussed. It is concluded that those MPPT schemes deploying the measured external variables would be able to track the global maximum power point with high reliability; however, their implementation cost and applicability remains as a challenge due to increasing the sensor deployment cost and complexity. The conclusion of this paper will help new researchers to deliberately select an appropriate MPPT scheme based on their projects’ objectives and limitations, prior to selecting an optimisation algorithm for MPPT.

63 citations

Journal ArticleDOI
TL;DR: A comparison with the existing step-up topologies indicates that the number of passive elements and hence the weight and size have been reduced and a high efficiency above 91% can be achieved.
Abstract: A high voltage ratio DC–DC converter is proposed which is comprised of four stages. First, an impedance network along with a switching network have been used to boost the input voltage. The boosted voltage waveform is then followed by an isolation transformer to provide another degree of freedom and obtain higher boost ability. Finally, a voltage multiplier rectifier is utilised to rectify the secondary voltage of the transformer. No switching dead‐time is required, which increases the reliability of the converter. The proposed converter benefits from the continuous input current. Besides, a comparison with the existing step‐up topologies indicates that the number of passive elements and hence the weight and size have been reduced. The operating principles were analysed and the experimental tests on a 260 W prototype reveal that a high efficiency above 91% can be achieved.

38 citations


Cited by
More filters
Proceedings Article
01 Jan 2010
TL;DR: In this article, a low power boost converter for thermoelectric energy harvesting that demonstrates an efficiency that is 15% higher than the state-of-the-art for voltage conversion ratios above 20.
Abstract: This paper presents a low power boost converter for thermoelectric energy harvesting that demonstrates an efficiency that is 15% higher than the state-of-the-art for voltage conversion ratios above 20. This is achieved by utilizing a technique allowing synchronous rectification in the discontinuous conduction mode. A low-power method for input voltage monitoring is presented. The low input voltage requirements allow operation from a thermoelectric generator powered by body heat. The converter, fabricated in a 0.13 μm CMOS process, operates from input voltages ranging from 20 mV to 250 mV while supplying a regulated 1 V output. The converter consumes 1.6 (1.1) μW of quiescent power, delivers up to 25 (175) μW of output power, and is 46 (75)% efficient for a 20 mV and 100 mV input, respectively.

412 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a non-isolated high step-up dc-dc converter with dual coupled inductors suitable for distributed generation applications, which inherits shared input current with low ripple, which also requires small capacitive filter at its input.
Abstract: This paper introduces a non-isolated high step-up dc–dc converter with dual coupled inductors suitable for distributed generation applications. By implementing an input parallel connection, the proposed dc–dc structure inherits shared input current with low ripple, which also requires small capacitive filter at its input. Moreover, this topology can reach high voltage gain by using dual coupled inductors in series connection at the output stage. The proposed converter uses active clamp circuits with a shared clamp capacitor for the main switches. In addition to the active clamp circuit, the leakage energy is recycled to the output by using an integrated regenerative snubber. Indeed, these circuits allow soft-switching conditions, i.e., zero voltage switching and zero current switching for active and passive switching devices, respectively. The mentioned features along with a common ground connection of the input and output make the proposed topology a proper candidate for transformer-less grid-connected photovoltaic systems. The operating performance, analysis and mathematical derivations of the proposed dc–dc converter have been demonstrated in the paper. Moreover, the main features of the proposed converter have been verified through experimental results of a 1-kW laboratory prototype.

287 citations

Journal ArticleDOI
25 Apr 2019-Energies
TL;DR: In this article, the design and evaluation of different DC-DC converter topologies for battery electric vehicles (BEVs) and Plug-in Hybrid Electric Vehicles (PHEVs) are presented, analyzed and compared in terms of output power, component count, switching frequency, losses, effectiveness, reliability and cost.
Abstract: This article reviews the design and evaluation of different DC-DC converter topologies for Battery Electric Vehicles (BEVs) and Plug-in Hybrid Electric Vehicles (PHEVs). The design and evaluation of these converter topologies are presented, analyzed and compared in terms of output power, component count, switching frequency, electromagnetic interference (EMI), losses, effectiveness, reliability and cost. This paper also evaluates the architecture, merits and demerits of converter topologies (AC-DC and DC-DC) for Fast Charging Stations (FCHARs). On the basis of this analysis, it has found that the Multidevice Interleaved DC-DC Bidirectional Converter (MDIBC) is the most suitable topology for high-power BEVs and PHEVs (> 10kW), thanks to its low input current ripples, low output voltage ripples, low electromagnetic interference, bidirectionality, high efficiency and high reliability. In contrast, for low-power electric vehicles (<10 kW), it is tough to recommend a single candidate that is the best in all possible aspects. However, the Sinusoidal Amplitude Converter, the Z-Source DC-DC converter and the boost DC-DC converter with resonant circuit are more suitable for low-power BEVs and PHEVs because of their soft switching, noise-free operation, low switching loss and high efficiency. Finally, this paper explores the opportunity of using wide band gap semiconductors (WBGSs) in DC-DC converters for BEVs, PHEVs and converters for FCHARs. Specifically, the future roadmap of research for WBGSs, modeling of emerging topologies and design techniques of the control system for BEV and PHEV powertrains are also presented in detail, which will certainly help researchers and solution engineers of automotive industries to select the suitable converter topology to achieve the growth of projected power density.

180 citations

Journal ArticleDOI
TL;DR: An overview of advanced control technologies for bidirectional dc/dc converters in dc microgrids and applications in other high-gain nonisolated and isolated converters for high-power applications is presented.
Abstract: DC microgrids encounter the challenges of constant power loads (CPLs) and pulsed power loads (PPLs), which impose the requirements of fast dynamics, large stability margin, high robustness that cannot be easily addressed by conventional linear control methods. This necessitates the implementation of advanced control technologies in order to significantly improve the robustness, dynamic performance, stability and flexibility of the system. This article presents an overview of advanced control technologies for bidirectional dc/dc converters in dc microgrids. First, the stability issue caused by CPLs and the power balance issue caused by PPLs are discussed, which motivate the utilization of advanced control technologies for addressing these issues. Next, typical advanced control technologies including model predictive control, backstepping control, sliding-mode control, passivity-based control, disturbance estimation techniques, intelligent control, and nonlinear modeling approaches are reviewed. Then the applications of advanced control technologies in bidirectional dc/dc converters are presented for the stabilization of CPLs and accommodation of PPLs. Finally, advanced control techniques are explored in other high-gain nonisolated (e.g., interleaved, multilevel, cascaded) and isolated converters (e.g., dual active bridge) for high-power applications.

174 citations

Journal ArticleDOI
TL;DR: The features of each topology and control scheme along with their typical applications are discussed, in order to provide a ground of comparison for realizing new configurations or finding the appropriate converter for the specific application.
Abstract: Bidirectional DC-DC power converters are increasingly employed in diverse applications whereby power flow in both forward and reverse directions are required. These include but not limited to energy storage systems, uninterruptable power supplies, electric vehicles, and renewable energy systems, to name a few. This paper aims to review these converters from the point of view of topology as well as control schemes. From the point of view of topology, these converters are divided into two main categories, namely non-isolated and isolated configurations. Each category is divided into eight groups along with their respective schematics and a table of summary. Furthermore, the common control schemes and switching strategies for these converters are also reviewed. Some of the control schemes are typically applied to all DC-DC power converters such as PID, sliding mode, fuzzy, model predictive, digital control, etc. In this context, it should be noted that some switching strategies were designed specifically for isolated bidirectional DC-DC converters in order to improve their performance such as single phase shift, dual phase shift, triple phase shift, etc. The features of each topology and control scheme along with their typical applications are discussed, in order to provide a ground of comparison for realizing new configurations or finding the appropriate converter for the specific application.

170 citations