scispace - formally typeset
Search or ask a question
Author

Sameena Khan

Bio: Sameena Khan is an academic researcher from Translational Health Science and Technology Institute. The author has contributed to research in topics: Deubiquitinating enzyme & Ubiquitin. The author has an hindex of 11, co-authored 16 publications receiving 418 citations. Previous affiliations of Sameena Khan include International Centre for Genetic Engineering and Biotechnology.

Papers
More filters
Journal ArticleDOI
TL;DR: What is known about cytosolic and organellar translation in Plasmodium is reviewed and the molecules that have been identified through genome sequencing and post-genomic analysis are discussed.

85 citations

Journal ArticleDOI
TL;DR: This review provides a comprehensive overview of the potential of UPS players as a drug target for cancer and other human disorders and condensed around 100 enzymes of UPS machinery from the literature that ubiquitinates or deubiquitinates the apoptotic proteins and regulates the cell fate.
Abstract: Regulatory functions of the ubiquitin-proteasome system (UPS) are exercised mainly by the ubiquitin ligases and deubiquitinating enzymes. Degradation of apoptotic proteins by UPS is central to the maintenance of cell health, and deregulation of this process is associated with several diseases including tumors, neurodegenerative disorders, diabetes, and inflammation. Therefore, it is the view that interrogating protein turnover in cells can offer a strategy for delineating disease-causing mechanistic perturbations and facilitate identification of drug targets¬¬. In this review, we are summarizing an overview to elucidate the updated knowledge on the molecular interplay between the apoptosis and UPS pathways. We have condensed around 100 enzymes of UPS machinery from the literature that ubiquitinates or deubiquitinates the apoptotic proteins and regulates the cell fate. We have also provided a detailed insight into how the UPS proteins are able to fine-tune the intrinsic, extrinsic and p53-mediated apoptotic pathways to regulate cell survival or cell death. This review provides a comprehensive overview of the potential of UPS players as a drug target for cancer and other human disorders.

63 citations

Journal ArticleDOI
TL;DR: PfKRS-K-C structure highlights ample space within PfKRS active site for further chemical derivatization of cladosporin, which may be useful against additional human pathogens that retain high conservation in clados porin chelating residues within their lysyl-tRNA synthetase.
Abstract: Malaria parasites inevitably develop drug resistance to anti-malarials over time. Hence the immediacy for discovering new chemical scaffolds to include in combination malaria drug therapy. The desirable attributes of new chemotherapeutic agents currently include activity against both liver and blood stage malaria parasites. One such recently discovered compound called cladosporin abrogates parasite growth via inhibition of Plasmodium falciparum lysyl-tRNA synthetase (PfKRS), an enzyme central to protein translation. Here, we present crystal structure of ternary PfKRS-lysine-cladosporin (PfKRS-K-C) complex that reveals cladosporin’s remarkable ability to mimic the natural substrate adenosine and thereby colonize PfKRS active site. The isocoumarin fragment of cladosporin sandwiches between critical adenine-recognizing residues while its pyran ring fits snugly in the ribose-recognizing cavity. PfKRS-K-C structure highlights ample space within PfKRS active site for further chemical derivatization of cladosporin. Such derivatives may be useful against additional human pathogens that retain high conservation in cladosporin chelating residues within their lysyl-tRNA synthetase.

59 citations

Journal ArticleDOI
TL;DR: This work shows that parasite tyrosyl-tRNA synthetase (PfTyrRS), a housekeeping protein translation enzyme, induces pro-inflammatory responses from host immune cells, and describes it as a parasite-secreted protein that triggers pro- inflammatory host responses.
Abstract: Malaria infection triggers pro-inflammatory responses in humans that are detrimental to host health. Parasite-induced enhancement in cytokine levels correlate with malaria-associated pathologies. Here we show that parasite tyrosyl-tRNA synthetase (PfTyrRS), a housekeeping protein translation enzyme, induces pro-inflammatory responses from host immune cells. PfTyrRS exits from the parasite cytoplasm into the infected red blood cell (iRBC) cytoplasm, from where it is released into the extracellular medium on iRBC lysis. Using its ELR peptide motif, PfTyrRS specifically binds to and internalizes into host macrophages, leading to enhanced secretion of the pro-inflammatory cytokines TNF-α and IL-6. PfTyrRS-macrophage interaction also augments expression of adherence-linked host endothelial receptors ICAM-1 and VCAM-1. Our description of PfTyrRS as a parasite-secreted protein that triggers pro-inflammatory host responses, along with its atomic resolution crystal structure in complex with tyrosyl-adenylate, provides a novel platform for targeting PfTyrRS in anti-parasitic strategies.

58 citations

Journal ArticleDOI
TL;DR: Investigation of the crystal structure of cytoplasmic lysyl-tRNA synthetase from the malaria parasite Plasmodium falciparum has allowed direct comparison with human LysRS, and it is shown for the first time that PfLysRS is capable of synthesizing the signalling molecule Ap4a using ATP as a substrate.
Abstract: Aminoacyl-tRNA synthetases are essential enzymes that transmit information from the genetic code to proteins in cells and are targets for antipathogen drug development. Elucidation of the crystal structure of cytoplasmic lysyl-tRNA synthetase from the malaria parasite Plasmodium falciparum (PfLysRS) has allowed direct comparison with human LysRS. The authors' data suggest that PfLysRS is dimeric in solution, whereas the human counterpart can also adopt tetrameric forms. It is shown for the first time that PfLysRS is capable of synthesizing the signalling molecule Ap4a (diadenosine tetraphosphate) using ATP as a substrate. The PfLysRS crystal structure is in the apo form, such that binding to ATP will require rotameric changes in four conserved residues. Differences in the active-site regions of parasite and human LysRSs suggest the possibility of exploiting PfLysRS for selective inhibition. These investigations on PfLysRS further validate malarial LysRSs as attractive antimalarial targets and provide new structural space for the development of inhibitors that target pathogen LysRSs selectively.

54 citations


Cited by
More filters
01 Jan 2007

490 citations

Journal ArticleDOI
09 Jun 2014-eLife
TL;DR: The cryo-EM structure of the cytoplasmic ribosome from the human malaria parasite, Plasmodium falciparum, in complex with emetine at 3.2 Å resolution is solved, establishing cryo -EM as a powerful tool for screening and guiding the design of drugs that target parasite translation machinery.
Abstract: Malaria inflicts an enormous burden on global human health. The emergence of parasite resistance to front-line drugs has prompted a renewed focus on the repositioning of clinically approved drugs as potential anti-malarial therapies. Antibiotics that inhibit protein translation are promising candidates for repositioning. We have solved the cryo-EM structure of the cytoplasmic ribosome from the human malaria parasite, Plasmodium falciparum, in complex with emetine at 3.2 A resolution. Emetine is an anti-protozoan drug used in the treatment of ameobiasis that also displays potent anti-malarial activity. Emetine interacts with the E-site of the ribosomal small subunit and shares a similar binding site with the antibiotic pactamycin, thereby delivering its therapeutic effect by blocking mRNA/tRNA translocation. As the first cryo-EM structure that visualizes an antibiotic bound to any ribosome at atomic resolution, this establishes cryo-EM as a powerful tool for screening and guiding the design of drugs that target parasite translation machinery.

294 citations

Journal ArticleDOI
TL;DR: The authors report the complete plastomes of 10 photosynthetic and nonphotosynthetic parasites plus their nonparasitic sister from the broomrape family (Orobanchaceae), finding that the establishment of obligate parasitism triggers the relaxation of selective constraints.
Abstract: Nonphotosynthetic plants possess strongly reconfigured plastomes attributable to convergent losses of photosynthesis and housekeeping genes, making them excellent systems for studying genome evolution under relaxed selective pressures. We report the complete plastomes of 10 photosynthetic and nonphotosynthetic parasites plus their nonparasitic sister from the broomrape family (Orobanchaceae). By reconstructing the history of gene losses and genome reconfigurations, we find that the establishment of obligate parasitism triggers the relaxation of selective constraints. Partly because of independent losses of one inverted repeat region, Orobanchaceae plastomes vary 3.5-fold in size, with 45 kb in American squawroot (Conopholis americana) representing the smallest plastome reported from land plants. Of the 42 to 74 retained unique genes, only 16 protein genes, 15 tRNAs, and four rRNAs are commonly found. Several holoparasites retain ATP synthase genes with intact open reading frames, suggesting a prolonged function in these plants. The loss of photosynthesis alters the chromosomal architecture in that recombinogenic factors accumulate, fostering large-scale chromosomal rearrangements as functional reduction proceeds. The retention of DNA fragments is strongly influenced by both their proximity to genes under selection and the co-occurrence with those in operons, indicating complex constraints beyond gene function that determine the evolutionary survival time of plastid regions in nonphotosynthetic plants.

236 citations

Y Zhang, R Song, W Peng, F Lv, C Cao, R Xiao 
01 Jan 2013
TL;DR: It is shown in mice that muscle-specific mitsugumin 53 mediates the degradation of the insulin receptor and insulin receptor substrate 1 (IRS1), and when upregulated, causes metabolic syndrome featuring insulin resistance, obesity, hypertension and dyslipidaemia.
Abstract: Insulin resistance is a fundamental pathogenic factor present in various metabolic disorders including obesity and type 2 diabetes. Although skeletal muscle accounts for 70–90% of insulin-stimulated glucose disposal, the mechanism underlying muscle insulin resistance is poorly understood. Here we show in mice that muscle-specific mitsugumin 53 (MG53; also called TRIM72) mediates the degradation of the insulin receptor and insulin receptor substrate 1 (IRS1), and when upregulated, causes metabolic syndrome featuring insulin resistance, obesity, hypertension and dyslipidaemia. MG53 expression is markedly elevated in models of insulin resistance, and MG53 overexpression suffices to trigger muscle insulin resistance and metabolic syndrome sequentially. Conversely, ablation of MG53 prevents diet-induced metabolic syndrome by preserving the insulin receptor, IRS1 and insulin signalling integrity. Mechanistically, MG53 acts as an E3 ligase targeting the insulin receptor and IRS1 for ubiquitin-dependent degradation, comprising a central mechanism controlling insulin signal strength in skeletal muscle. These findings define MG53 as a novel therapeutic target for treating metabolic disorders and associated cardiovascular complications.

179 citations

Journal ArticleDOI
TL;DR: A new boron-based antibiotic class, the aminomethylbenzoxaboroles, which inhibit bacterial leucyl-tRNA synthetase and have activity against Gram-negative bacteria by largely evading the main efflux mechanisms in Escherichia coli and Pseudomonas aeruginosa is developed.
Abstract: Gram-negative bacteria cause approximately 70% of the infections in intensive care units. A growing number of bacterial isolates responsible for these infections are resistant to currently available antibiotics and to many in development. Most agents under development are modifications of existing drug classes, which only partially overcome existing resistance mechanisms. Therefore, new classes of Gram-negative antibacterials with truly novel modes of action are needed to circumvent these existing resistance mechanisms. We have previously identified a new a way to inhibit an aminoacyl-tRNA synthetase, leucyl-tRNA synthetase (LeuRS), in fungi via the oxaborole tRNA trapping (OBORT) mechanism. Herein, we show how we have modified the OBORT mechanism using a structure-guided approach to develop a new boron-based antibiotic class, the aminomethylbenzoxaboroles, which inhibit bacterial leucyl-tRNA synthetase and have activity against Gram-negative bacteria by largely evading the main efflux mechanisms in Escherichia coli and Pseudomonas aeruginosa. The lead analogue, AN3365, is active against Gram-negative bacteria, including Enterobacteriaceae bearing NDM-1 and KPC carbapenemases, as well as P. aeruginosa. This novel boron-based antibacterial, AN3365, has good mouse pharmacokinetics and was efficacious against E. coli and P. aeruginosa in murine thigh infection models, which suggest that this novel class of antibacterials has the potential to address this unmet medical need.

161 citations