scispace - formally typeset
Search or ask a question
Author

Sameer Walavalkar

Bio: Sameer Walavalkar is an academic researcher from California Institute of Technology. The author has contributed to research in topics: Nanopillar & Silicon. The author has an hindex of 12, co-authored 34 publications receiving 978 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an Ag split ring resonator (SRR) is patterned with e-beam lithography onto planar VO_2 and etched via reactive ion etching to yield Ag/VO_2 hybrid SRRs.
Abstract: Engineering metamaterials with tunable resonances from mid-infrared to near-infrared wavelengths could have far-reaching consequences for chip based optical devices, active filters, modulators, and sensors. Utilizing the metal-insulator phase transition in vanadium oxide (VO_2), we demonstrate frequency-tunable metamaterials in the near-IR range, from 1.5 - 5 microns. Arrays of Ag split ring resonators (SRRs) are patterned with e-beam lithography onto planar VO_2 and etched via reactive ion etching to yield Ag/VO_2 hybrid SRRs. FTIR reflection data and FDTD simulation results show the resonant peak position red shifts upon heating above the phase transition temperature. We also show that, by including coupling elements in the design of these hybrid Ag/VO_2 bi-layer structures, we can achieve resonant peak position tuning of up to 110 nm.

511 citations

Journal ArticleDOI
TL;DR: Using sputtered aluminum oxide (alumina) as a resilient etch mask for fluorinated silicon reactive ion etches and fabrication of high-aspect-ratio silicon micropillars and nanopillars is introduced.
Abstract: We introduce using sputtered aluminum oxide (alumina) as a resilient etch mask for fluorinated silicon reactive ion etches. Achieving selectivity of 5000:1 for cryogenic silicon etching and 68:1 for SF_6/C_4F_8 silicon etching, we employ this mask for fabrication of high-aspect-ratio silicon micropillars and nanopillars. Nanopillars with diameters ranging from below 50 nm up to several hundred nanometers are etched to heights greater than 2 µm. Micropillars of 5, 10, 20, and 50 µm diameters are etched to heights of over 150 µm with aspect ratios greater than 25. Processing and characterization of the sputtered alumina is also discussed.

137 citations

Journal ArticleDOI
TL;DR: Visible and near-IR photoluminescence (PL) is reported from sub-10 nm silicon nanopillars, which show promise as possible complementary metal oxide semiconductor compatible silicon devices in the form of light-emitting diode or laser structures.
Abstract: Visible and near-IR photoluminescence (PL) is reported from sub-10 nm silicon nanopillars. Pillars were plasma etched from single crystal Si wafers and thinned by utilizing strain-induced, self-terminating oxidation of cylindrical structures. PL, lifetime, and transmission electron microscopy were performed to measure the dimensions and emission characteristics of the pillars. The peak PL energy was found to blue shift with narrowing pillar diameter in accordance with a quantum confinement effect. The blue shift was quantified using a tight binding method simulation that incorporated the strain induced by the thermal oxidation process. These pillars show promise as possible complementary metal oxide semiconductor compatible silicon devices in the form of light-emitting diode or laser structures.

92 citations

Patent
22 Nov 2010
TL;DR: In this article, the authors describe methods for fabricating silicon nanowire chemical sensing devices, devices thus obtained, and methods for utilizing devices for sensing and measuring chemical concentration of selected species in a fluid.
Abstract: Methods for fabricating silicon nanowire chemical sensing devices, devices thus obtained, and methods for utilizing devices for sensing and measuring chemical concentration of selected species in a fluid are described. Devices may comprise a metal-oxide-semiconductor field-effect transistor (MOSFET) structure.

40 citations

Journal ArticleDOI
TL;DR: In this article, the authors used corrugated etching techniques to fabricate size-tunable silicon quantum dots that luminesce under photoexcitation, tunable over the visible and near infrared.
Abstract: Corrugated etching techniques were used to fabricate size-tunable silicon quantum dots that luminesce under photoexcitation, tunable over the visible and near infrared. By using the fidelity of lithographic patterning and strain limited, self-terminating oxidation, uniform arrays of pillar containing stacked quantum dots as small as 2 nm were patterned. Furthermore, an array of pillars, with multiple similar sized quantum dots on each pillar, was fabricated and tested. The photoluminescence displayed a multiple, closely peaked emission spectra corresponding to quantum dots with a narrow size distribution. Similar structures can provide quantum confinement effects for future nanophotonic and nanoelectronic devices.

29 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The steep dispersion of the Fano resonance profile promises applications in sensors, lasing, switching, and nonlinear and slow-light devices.
Abstract: Since its discovery, the asymmetric Fano resonance has been a characteristic feature of interacting quantum systems. The shape of this resonance is distinctively different from that of conventional symmetric resonance curves. Recently, the Fano resonance has been found in plasmonic nanoparticles, photonic crystals, and electromagnetic metamaterials. The steep dispersion of the Fano resonance profile promises applications in sensors, lasing, switching, and nonlinear and slow-light devices.

3,536 citations

Journal ArticleDOI
TL;DR: This review explores different material classes for plasmonic and metamaterial applications, such as conventional semiconductors, transparent conducting oxides, perovskiteOxides, metal nitrides, silicides, germanides, and 2D materials such as graphene.
Abstract: Materials research plays a vital role in transforming breakthrough scientific ideas into next-generation technology. Similar to the way silicon revolutionized the microelectronics industry, the proper materials can greatly impact the field of plasmonics and metamaterials. Currently, research in plasmonics and metamaterials lacks good material building blocks in order to realize useful devices. Such devices suffer from many drawbacks arising from the undesirable properties of their material building blocks, especially metals. There are many materials, other than conventional metallic components such as gold and silver, that exhibit metallic properties and provide advantages in device performance, design flexibility, fabrication, integration, and tunability. This review explores different material classes for plasmonic and metamaterial applications, such as conventional semiconductors, transparent conducting oxides, perovskite oxides, metal nitrides, silicides, germanides, and 2D materials such as graphene. This review provides a summary of the recent developments in the search for better plasmonic materials and an outlook of further research directions.

1,836 citations

Journal ArticleDOI
TL;DR: Recent progress in the physics of metasurfaces operating at wavelengths ranging from microwave to visible is reviewed, with opinions of opportunities and challenges in this rapidly developing research field.
Abstract: Metamaterials are composed of periodic subwavelength metal/dielectric structures that resonantly couple to the electric and/or magnetic components of the incident electromagnetic fields, exhibiting properties that are not found in nature. This class of micro- and nano-structured artificial media have attracted great interest during the past 15 years and yielded ground-breaking electromagnetic and photonic phenomena. However, the high losses and strong dispersion associated with the resonant responses and the use of metallic structures, as well as the difficulty in fabricating the micro- and nanoscale 3D structures, have hindered practical applications of metamaterials. Planar metamaterials with subwavelength thickness, or metasurfaces, consisting of single-layer or few-layer stacks of planar structures, can be readily fabricated using lithography and nanoprinting methods, and the ultrathin thickness in the wave propagation direction can greatly suppress the undesirable losses. Metasurfaces enable a spatially varying optical response (e.g. scattering amplitude, phase, and polarization), mold optical wavefronts into shapes that can be designed at will, and facilitate the integration of functional materials to accomplish active control and greatly enhanced nonlinear response. This paper reviews recent progress in the physics of metasurfaces operating at wavelengths ranging from microwave to visible. We provide an overview of key metasurface concepts such as anomalous reflection and refraction, and introduce metasurfaces based on the Pancharatnam-Berry phase and Huygens' metasurfaces, as well as their use in wavefront shaping and beam forming applications, followed by a discussion of polarization conversion in few-layer metasurfaces and their related properties. An overview of dielectric metasurfaces reveals their ability to realize unique functionalities coupled with Mie resonances and their low ohmic losses. We also describe metasurfaces for wave guidance and radiation control, as well as active and nonlinear metasurfaces. Finally, we conclude by providing our opinions of opportunities and challenges in this rapidly developing research field.

1,528 citations

Journal ArticleDOI
TL;DR: Metamaterials are composed of periodic subwavelength metal/dielectric structures that resonantly couple to the electric and/or magnetic components of the incident electromagnetic fields, exhibiting properties that are not found in nature as discussed by the authors.
Abstract: Metamaterials are composed of periodic subwavelength metal/dielectric structures that resonantly couple to the electric and/or magnetic components of the incident electromagnetic fields, exhibiting properties that are not found in nature. Planar metamaterials with subwavelength thickness, or metasurfaces, consisting of single-layer or few-layer stacks of planar structures, can be readily fabricated using lithography and nanoprinting methods, and the ultrathin thickness in the wave propagation direction can greatly suppress the undesirable losses. Metasurfaces enable a spatially varying optical response, mold optical wavefronts into shapes that can be designed at will, and facilitate the integration of functional materials to accomplish active control and greatly enhanced nonlinear response. This paper reviews recent progress in the physics of metasurfaces operating at wavelengths ranging from microwave to visible. We provide an overview of key metasurface concepts such as anomalous reflection and refraction, and introduce metasurfaces based on the Pancharatnam-Berry phase and Huygens' metasurfaces, as well as their use in wavefront shaping and beam forming applications, followed by a discussion of polarization conversion in few-layer metasurfaces and their related properties. An overview of dielectric metasurfaces reveals their ability to realize unique functionalities coupled with Mie resonances and their low ohmic losses. We also describe metasurfaces for wave guidance and radiation control, as well as active and nonlinear metasurfaces. Finally, we conclude by providing our opinions of opportunities and challenges in this rapidly developing research field.

1,106 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss the role of materials synthesis in influencing functional properties and discuss future research directions that may be worth consideration, concluding with a brief discussion on future directions that are worth consideration.
Abstract: Although phase transitions have long been a centerpiece of condensed matter materials science studies, a number of recent efforts focus on potentially exploiting the resulting functional property changes in novel electronics and photonics as well as understanding emergent phenomena. This is quite timely, given a grand challenge in twenty-first-century physical sciences is related to enabling continued advances in information processing and storage beyond conventional CMOS scaling. In this brief review, we discuss synthesis of strongly correlated oxides, mechanisms of metal-insulator transitions, and exploratory electron devices that are being studied. Particular emphasis is placed on vanadium dioxide, which undergoes a sharp metal-insulator transition near room temperature at ultrafast timescales. The article begins with an introduction to metal-insulator transition in oxides, followed by a brief discussion on the mechanisms leading to the phase transition. The role of materials synthesis in influencing functional properties is discussed briefly. Recent efforts on realizing novel devices such as field effect switches, optical detectors, nonlinear circuit components, and solid-state sensors are reviewed. The article concludes with a brief discussion on future research directions that may be worth consideration.

859 citations