scispace - formally typeset
Search or ask a question
Author

Sameh S. Elhady

Bio: Sameh S. Elhady is an academic researcher from King Abdulaziz University. The author has contributed to research in topics: Medicine & Chemistry. The author has an hindex of 9, co-authored 35 publications receiving 214 citations. Previous affiliations of Sameh S. Elhady include Suez Canal University & Port Said University.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors considered drug repurposing as an attractive approach that can facilitate the drug discovery process by reusing existing pharmaceuticals to treat illnesses other than their primary indications.
Abstract: The rapid and global spread of a new human coronavirus, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has produced an immediate urgency to discover promising targets for the treatment of COVID-19. Here, we consider drug repurposing as an attractive approach that can facilitate the drug discovery process by repurposing existing pharmaceuticals to treat illnesses other than their primary indications. We review current information concerning the global health issue of COVID-19 including promising approved drugs, e.g., human angiotensin-converting enzyme inhibitors (hACEIs). Besides, we describe computational approaches to be used in drug repurposing and highlight examples of in-silico studies of drug development efforts against SARS-CoV-2. Alacepril and lisinopril were found to interact with human angiotensin-converting enzyme 2 (hACE2), the host entranceway for SARS-CoV-2 spike protein, through exhibiting the most acceptable rmsd_refine values and the best binding affinity through forming a strong hydrogen bond with Asn90, which is assumed to be essential for the activity, as well as significant extra interactions with other receptor-binding residues. Furthermore, molecular dynamics (MD) simulations followed by calculation of the binding free energy were also carried out for the most promising two ligand-pocket complexes from docking studies (alacepril and lisinopril) to clarify some information on their thermodynamic and dynamic properties and confirm the docking results as well. These results we obtained probably provided an excellent lead candidate for the development of therapeutic drugs against COVID-19. Eventually, animal experiments and accurate clinical trials are needed to confirm the potential preventive and treatment effect of these compounds.

94 citations

Journal ArticleDOI
TL;DR: A promising SAR is clarified responsible for the antiviral activity against the SARS-CoV-2 Mpro and the design of new drug candidates targeting it as well is clarified and could be promising for fast examining the previously isolated triterpenes both pre-clinically and clinically for the treatment of COVID-19.

66 citations

Journal ArticleDOI
TL;DR: The global prevalence of COVID-19 disease and the overwhelming increase in death toll urge scientists to discover new effective drugs as discussed by the authors, although the drug discovery process is a challenging and time-consuming process.
Abstract: The global prevalence of COVID-19 disease and the overwhelming increase in death toll urge scientists to discover new effective drugs. Although the drug discovery process is a challenging and time-...

47 citations

Journal ArticleDOI
TL;DR: A comprehensive in silico investigation of a highly focused chemical library of 34 pederin-structurally related marine compounds, belonging to four polyketides families, was initiated against the SARS-CoV-2 main protease, Mpro, being the key replicating element of the virus and main target in many drugs development programs.
Abstract: Since its first report in December 2019, the novel coronavirus virus, SARS-CoV-2, has caused an unprecedented global health crisis and economic loss imposing a tremendous burden on the worldwide finance, healthcare system, and even daily life. Even with the introduction of different preventive vaccines, there is still a dire need for effective antiviral therapeutics. Nature has been considered as the historical trove of drug discovery and development, particularly in cases of worldwide crises. Herein, a comprehensive in silico investigation of a highly focused chemical library of 34 pederin-structurally related marine compounds, belonging to four polyketides families, was initiated against the SARS-CoV-2 main protease, Mpro, being the key replicating element of the virus and main target in many drugs development programs. Two of the most potent SARS-CoV-2 Mpro co-crystallized inhibitors, O6K and N3, were added to the tested database as reference standards. Through molecular docking simulation, promising compounds including Pederin (1), Dihydro-onnamide A (11), Onnamide C (14), Pseudo-onnamide A (17), and Theopederin G (29) have been identified from different families based on their superior ligand–protein energies and relevant binding profiles with the key Mpro pocket residues. Thermodynamic behaviors of the identified compounds were investigated through 200 ns all-atom molecular dynamics simulation illustrating their significant stability and pocket accommodation. Furthermore, structural activity preferentiality was identified for the pederin-based marine compounds highlighting the importance of the terminal guanidine and cyclic hemiacetal linker, and the length of the sidechain. Our findings highlight the challenges of targeting SARS-CoV-2 Mpro as well as recommending further in vitro and in vivo studies regarding the examined marine products either alone or in combination paving the way for promising lead molecules.

46 citations

Journal ArticleDOI
TL;DR: In this article, molecular docking of twenty FDA-approved β-blockers was performed targeting SARS-CoV-2 Mpro, which showed promising inhibitory activities especially for Carvedilol (CAR) and Nebivolol (NEB) members.
Abstract: The global COVID-19 pandemic became more threatening especially after the introduction of the second and third waves with the current large expectations for a fourth one as well. This urged scientists to rapidly develop a new effective therapy to combat SARS-CoV-2. Based on the structures of β-adrenergic blockers having the same hydroxyethylamine and hydroxyethylene moieties present in the HIV-1 protease inhibitors which were found previously to inhibit the replication of SARS-CoV, we suggested that they may decrease the SARS-CoV-2 entry into the host cell through their ability to decrease the activity of RAAS and ACE2 as well. Herein, molecular docking of twenty FDA-approved β-blockers was performed targeting SARS-CoV-2 Mpro. Results showed promising inhibitory activities especially for Carvedilol (CAR) and Nebivolol (NEB) members. Moreover, these two drugs together with Bisoprolol (BIS) as an example from the lower active ones were subjected to molecular dynamics simulations at 100 ns. Great stability across the whole 100 ns timeframe was observed for the top docked ligands, CAR and NEB, over BIS. Conformational analysis of the examined drugs and hydrogen bond investigation with the pocket's crucial residues confirm the great affinity and confinement of CAR and NEB within the Mpro binding site. Moreover, the binding-free energy analysis and residue-wise contribution analysis highlight the nature of ligand–protein interaction and provide guidance for lead development and optimization. Furthermore, the examined three drugs were tested for their in vitro inhibitory activities towards SARS-CoV-2. It is worth mentioning that NEB achieved the most potential anti-SARS-CoV-2 activity with an IC50 value of 0.030 μg ml−1. Besides, CAR was found to have a promising inhibitory activity with an IC50 of 0.350 μg ml−1. Also, the IC50 value of BIS was found to be as low as 15.917 μg ml−1. Finally, the SARS-CoV-2 Mpro assay was performed to evaluate and confirm the inhibitory effects of the tested compounds (BIS, CAR, and NEB) towards the SARS-CoV-2 Mpro enzyme. The obtained results showed very promising SARS-CoV-2 Mpro inhibitory activities of BIS, CAR, and NEB (IC50 = 118.50, 204.60, and 60.20 μg ml−1, respectively) compared to lopinavir (IC50 = 73.68 μg ml−1) as a reference standard.

40 citations


Cited by
More filters
Book ChapterDOI
01 Jan 2002
TL;DR: The scope of the Profiles series encompasses review articles and database compilations that fall within one of the following six broad categories: Physical profiles ofdrug substances and excipients; Analytical profiles of drug substances and Excipients, and Reviews of the uses and applications for individual drug substances, classes ofDrug substances, or excIPients.
Abstract: Volumes in this widely revered series present comprehensive reviews of drug substances and additional materials, with critical review chapters that summarize information related to the characterization of drug substances and excipients. This organizational structure meets the needs of the pharmaceutical community and allows for the development of a timely vehicle for publishing review materials on this topic. The scope of the Profiles series encompasses review articles and database compilations that fall within one of the following six broad categories: Physical profiles of drug substances and excipients; Analytical profiles of drug substances and excipients; Drug metabolism and pharmacokinetic profiles of drug substances and excipients; Methodology related to the characterization of drug substances and excipients; Methods of chemical synthesis; and Reviews of the uses and applications for individual drug substances, classes of drug substances, or excipients. * Contributions from leading authorities * Informs and updates on all the latest developments in the field

169 citations

Journal ArticleDOI
TL;DR: In this review, not only the capability of the medicinal substances have been examined in vitro and in vivo against serious pathogenic microbes but, the mode of actions of medicinal compounds were explained with diagrammatic illustrations.
Abstract: Marine sponges have been considered as a drug treasure house with respect to great potential regarding their secondary metabolites. Most of the studies have been conducted on sponge’s derived compounds to examine its pharmacological properties. Such compounds proved to have antibacterial, antiviral, antifungal, antimalarial, antitumor, immunosuppressive, and cardiovascular activity. Although, the mode of action of many compounds by which they interfere with human pathogenesis have not been clear till now, in this review not only the capability of the medicinal substances have been examined in vitro and in vivo against serious pathogenic microbes but, the mode of actions of medicinal compounds were explained with diagrammatic illustrations. This knowledge is one of the basic components to be known especially for transforming medicinal molecules to medicines. Sponges produce a different kind of chemical substances with numerous carbon skeletons, which have been found to be the main component interfering with human pathogenesis at different sites. The fact that different diseases have the capability to fight at different sites inside the body can increase the chances to produce targeted medicines.

125 citations

Journal ArticleDOI
TL;DR: In this paper , a review of the literature published in 2019 for marine natural products (MNPs) with 736 citations (724 for the period January to December 2021) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms.

98 citations

Journal ArticleDOI
TL;DR: The history as well as the current progress in the analytical methods for chitin identification are outlined and biochemical and immunochemical methods are described with respect to their medical application.

89 citations

Journal ArticleDOI
TL;DR: Six compounds were screened for their anti-SARS-CoV-2 activities against both the spike (S) and main protease (Mpro) receptors using molecular docking studies and showed very promising virucidal activity with a most prominent inhibitory effect on viral adsorption rather than its replication.
Abstract: Six compounds namely, tanshinone IIA (1), carnosic acid (2), rosmarinic acid (3), salvianolic acid B (4), baicalein (5), and glycyrrhetinic acid (6) were screened for their anti-SARS-CoV-2 activities against both the spike (S) and main protease (Mpro) receptors using molecular docking studies. Molecular docking recommended the superior affinities of both salvianolic acid B (4) and glycyrrhetinic acid (6) as the common results from the previously published computational articles. On the other hand, their actual anti-SARS-CoV-2 activities were tested in vitro using plaque reduction assay to calculate their IC50 values after measuring their CC50 values using MTT assay on Vero E6 cells. Surprisingly, tanshinone IIA (1) was the most promising member with IC50 equals 4.08 ng μl−1. Also, both carnosic acid (2) and rosmarinic acid (3) showed promising IC50 values of 15.37 and 25.47 ng μl−1, respectively. However, salvianolic acid (4) showed a weak anti-SARS-CoV-2 activity with an IC50 value equals 58.29 ng μl−1. Furthermore, molecular dynamics simulations for 100 ns were performed for the most active compound from the computational point of view (salvianolic acid 4), besides, the most active one biologically (tanshinone IIA 1) on both the S and Mpro complexes of them (four different molecular dynamics processes) to confirm the docking results and give more insights regarding the stability of both compounds inside the SARS-CoV-2 mentioned receptors, respectively. Also, to understand the mechanism of action for the tested compounds towards SARS-CoV-2 inhibition it was necessary to examine the mode of action for the most two promising compounds, tanshinone IIA (1) and carnosic acid (2). Both compounds (1 and 2) showed very promising virucidal activity with a most prominent inhibitory effect on viral adsorption rather than its replication. This recommended the predicted activity of the two compounds against the S protein of SARS-CoV-2 rather than its Mpro protein. Our results could be very promising to rearrange the previously mentioned compounds based on their actual inhibitory activities towards SARS-CoV-2 and to search for the reasons behind the great differences between their in silico and in vitro results against SARS-CoV-2. Finally, we recommend further advanced preclinical and clinical studies especially for tanshinone IIA (1) to be rapidly applied in COVID-19 management either alone or in combination with carnosic acid (2), rosmarinic acid (3), and/or salvianolic acid (4).

71 citations