scispace - formally typeset
Search or ask a question
Author

Sami Heikkinen

Bio: Sami Heikkinen is an academic researcher from University of Helsinki. The author has contributed to research in topics: Reactivity (chemistry) & Ionic liquid. The author has an hindex of 20, co-authored 49 publications receiving 2010 citations. Previous affiliations of Sami Heikkinen include North Carolina State University & Helsinki University Central Hospital.

Papers
More filters
Journal ArticleDOI
TL;DR: The present paper demonstrates that both hardwoods and softwoods are readily soluble in various imidazolium-based ionic liquids (ILs) under gentle conditions, and offers a variety of new possibilities for its structural and macromolecular characterization, without the prior isolation of its individual components.
Abstract: The present paper demonstrates that both hardwoods and softwoods are readily soluble in various imidazolium-based ionic liquids (ILs) under gentle conditions. More specifically, a variety of ionic liquids can only partially dissolve wood chips, whereas ionic liquids such as 1-butyl-3-methylimidazolium chloride and 1-allyl-3-methylimidazolium chloride have good solvating power for Norway spruce sawdust and Norway spruce and Southern pine thermomechanical pulp (TMP) fibers. Despite the fact that the obtained solutions were not fully clear, these ionic liquids provided solutions which permitted the complete acetylation of the wood. Alternatively, transparent amber solutions of wood could be obtained when the dissolution of the same lignocellulosic samples was attempted in 1-benzyl-3-methylimidazolium chloride. This realization was based on a designed augmented interaction of the aromatic character of the cation of the ionic liquid with the lignin in the wood. After dissolution, wood can be regenerated as an ...

950 citations

Journal ArticleDOI
TL;DR: In this paper, structural characterization of lignin samples fractionated from softwood industrial black liquor (BL) was performed and the impact of fractionation and pulping severity on lignIN structure was studied.

177 citations

Journal ArticleDOI
TL;DR: In patients with type 1 diabetes, the increase in adhesion molecules and an association between altered brain metabolites and glycemic exposure suggest the presence of a vascularly mediated, progressive metabolic disturbance in the brain.
Abstract: Microangiopathic end-organ injury is common in type 1 diabetes. However, the pathophysiology of diabetic encephalopathy is poorly understood. The authors studied 10 normotensive patients with type 1 diabetes with retinopathy, autonomic neuropathy, but without nephropathy, and 10 healthy subjects. Proton magnetic resonance spectroscopy was performed at 1.5 T in the frontal cortex, thalamus, and posterior frontal white matter. There was no change in N-acetyl-containing compounds (NA), but choline-containing compounds (Cho) were increased in the white matter and in the thalamus; myo-inositol was increased in the white matter, glucose excess was found in all brain, and water intensity was increased in the cortical voxel in the patients. Calculated lifetime glycemic exposure correlated inversely with Cho and NA in white matter and with Cho in thalamus. Concentrations of soluble intercellular adhesion molecules and vascular cell adhesion molecules were increased in the patients. In conclusion, in patients with type 1 diabetes, the increase in adhesion molecules and an association between altered brain metabolites and glycemic exposure suggest the presence of a vascularly mediated, progressive metabolic disturbance in the brain.

84 citations

Journal ArticleDOI
TL;DR: In this technical review, the research work in the field of medical physics is discussed to form the groundwork for the Finnish BNCT patient treatments, as well as the possibilities to further develop and optimize the method in the future.

70 citations

Journal ArticleDOI
TL;DR: Sequence comparison suggests that similar packing of three tandem filamin domain pairs is present throughout the animal kingdom, and it is proposed that this packing is involved in the regulation of filamin interactions through a mechanosensor mechanism.

57 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: These standards of care are intended to provide clinicians, patients, researchers, payers, and other interested individuals with the components of diabetes care, general treatment goals, and tools to evaluate the quality of care.
Abstract: D iabetes mellitus is a chronic illness that requires continuing medical care and ongoing patient self-management education and support to prevent acute complications and to reduce the risk of long-term complications. Diabetes care is complex and requires that many issues, beyond glycemic control, be addressed. A large body of evidence exists that supports a range of interventions to improve diabetes outcomes. These standards of care are intended to provide clinicians, patients, researchers, payers, and other interested individuals with the components of diabetes care, general treatment goals, and tools to evaluate the quality of care. While individual preferences, comorbidities, and other patient factors may require modification of goals, targets that are desirable for most patients with diabetes are provided. Specifically titled sections of the standards address children with diabetes, pregnant women, and people with prediabetes. These standards are not intended to preclude clinical judgment or more extensive evaluation and management of the patient by other specialists as needed. For more detailed information about management of diabetes, refer to references 1–3. The recommendations included are screening, diagnostic, and therapeutic actions that are known or believed to favorably affect health outcomes of patients with diabetes. A large number of these interventions have been shown to be cost-effective (4). A grading system (Table 1), developed by the American Diabetes Association (ADA) andmodeled after existingmethods, was utilized to clarify and codify the evidence that forms the basis for the recommendations. The level of evidence that supports each recommendation is listed after each recommendation using the letters A, B, C, or E. These standards of care are revised annually by the ADA’s multidisciplinary Professional Practice Committee, incorporating new evidence. For the current revision, committee members systematically searched Medline for human studies related to each subsection and published since 1 January 2010. Recommendations (bulleted at the beginning of each subsection and also listed in the “Executive Summary: Standards of Medical Care in Diabetesd2012”) were revised based on new evidence or, in some cases, to clarify the prior recommendation or match the strength of the wording to the strength of the evidence. A table linking the changes in recommendations to new evidence can be reviewed at http:// professional.diabetes.org/CPR_Search. aspx. Subsequently, as is the case for all Position Statements, the standards of care were reviewed and approved by the ExecutiveCommittee of ADA’s Board ofDirectors, which includes health care professionals, scientists, and lay people. Feedback from the larger clinical community was valuable for the 2012 revision of the standards. Readers who wish to comment on the “Standards of Medical Care in Diabetesd2012” are invited to do so at http://professional.diabetes.org/ CPR_Search.aspx. Members of the Professional Practice Committee disclose all potential financial conflicts of interest with industry. These disclosures were discussed at the onset of the standards revisionmeeting. Members of the committee, their employer, and their disclosed conflicts of interest are listed in the “Professional PracticeCommitteeMembers” table (see pg. S109). The AmericanDiabetes Association funds development of the standards and all its position statements out of its general revenues and does not utilize industry support for these purposes.

4,266 citations

Journal ArticleDOI
TL;DR: Biomass is an important feedstock for the renewable production of fuels, chemicals, and energy, and it recently surpassed hydroelectric energy as the largest domestic source of renewable energy.
Abstract: Biomass is an important feedstock for the renewable production of fuels, chemicals, and energy. As of 2005, over 3% of the total energy consumption in the United States was supplied by biomass, and it recently surpassed hydroelectric energy as the largest domestic source of renewable energy. Similarly, the European Union received 66.1% of its renewable energy from biomass, which thus surpassed the total combined contribution from hydropower, wind power, geothermal energy, and solar power. In addition to energy, the production of chemicals from biomass is also essential; indeed, the only renewable source of liquid transportation fuels is currently obtained from biomass.

3,644 citations

Journal ArticleDOI
TL;DR: The recommendations included are screening, diagnostic, and therapeutic actions that are known or believed to favorably affect health outcomes of patients with diabetes that have been shown to be costeffective.

2,862 citations

Journal ArticleDOI
TL;DR: I. Screening and management of chronic complications in children and adolescents with type 1 diabetes i.e., screenings for type 2 diabetes and risk of future diabetes in adults, and strategy for improving diabetes care in the hospital, are outlined.
Abstract: I. CLASSIFICATION AND DIAGNOSIS OF DIABETES, p. S12 A. Classification of diabetes B. Diagnosis of diabetes C. Categories of increased risk for diabetes (prediabetes) II. TESTING FOR DIABETES IN ASYMPTOMATIC PATIENTS, p. S13 A. Testing for type 2 diabetes and risk of future diabetes in adults B. Testing for type 2 diabetes in children C. Screening for type 1 diabetes III. DETECTION AND DIAGNOSIS OF GESTATIONAL DIABETES MELLITUS, p. S15 IV. PREVENTION/DELAY OF TYPE 2 DIABETES, p. S16 V. DIABETES CARE, p. S16 A. Initial evaluation B. Management C. Glycemic control 1. Assessment of glycemic control a. Glucose monitoring b. A1C 2. Glycemic goals in adults D. Pharmacologic and overall approaches to treatment 1. Therapy for type 1 diabetes 2. Therapy for type 2 diabetes E. Diabetes self-management education F. Medical nutrition therapy G. Physical activity H. Psychosocial assessment and care I. When treatment goals are not met J. Hypoglycemia K. Intercurrent illness L. Bariatric surgery M. Immunization VI. PREVENTION AND MANAGEMENT OF DIABETES COMPLICATIONS, p. S27 A. Cardiovascular disease 1. Hypertension/blood pressure control 2. Dyslipidemia/lipid management 3. Antiplatelet agents 4. Smoking cessation 5. Coronary heart disease screening and treatment B. Nephropathy screening and treatment C. Retinopathy screening and treatment D. Neuropathy screening and treatment E. Foot care VII. DIABETES CARE IN SPECIFIC POPULATIONS, p. S38 A. Children and adolescents 1. Type 1 diabetes Glycemic control a. Screening and management of chronic complications in children and adolescents with type 1 diabetes i. Nephropathy ii. Hypertension iii. Dyslipidemia iv. Retinopathy v. Celiac disease vi. Hypothyroidism b. Self-management c. School and day care d. Transition from pediatric to adult care 2. Type 2 diabetes 3. Monogenic diabetes syndromes B. Preconception care C. Older adults D. Cystic fibrosis–related diabetes VIII. DIABETES CARE IN SPECIFIC SETTINGS, p. S43 A. Diabetes care in the hospital 1. Glycemic targets in hospitalized patients 2. Anti-hyperglycemic agents in hospitalized patients 3. Preventing hypoglycemia 4. Diabetes care providers in the hospital 5. Self-management in the hospital 6. Diabetes self-management education in the hospital 7. Medical nutrition therapy in the hospital 8. Bedside blood glucose monitoring 9. Discharge planning IX. STRATEGIES FOR IMPROVING DIABETES CARE, p. S46

2,827 citations