scispace - formally typeset
Search or ask a question
Author

Samir Abu-Rumeileh

Bio: Samir Abu-Rumeileh is an academic researcher from University of Bologna. The author has contributed to research in topics: Medicine & Frontotemporal dementia. The author has an hindex of 14, co-authored 27 publications receiving 708 citations. Previous affiliations of Samir Abu-Rumeileh include University of Ulm & Martin Luther University of Halle-Wittenberg.

Papers
More filters
Journal ArticleDOI
TL;DR: COVID-19-associated GBS seems to share most features of classic post-infectious GBS and possibly the same immune-mediated pathogenetic mechanisms, Nevertheless, more extensive epidemiological studies are needed to clarify these issues.
Abstract: Since coronavirus disease-2019 (COVID-19) outbreak in January 2020, several pieces of evidence suggested an association between the spectrum of Guillain–Barre syndrome (GBS) and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Most findings were reported in the form of case reports or case series, whereas a comprehensive overview is still lacking. We conducted a systematic review and searched for all published cases until July 20th 2020. We included 73 patients reported in 52 publications. A broad age range was affected (mean 55, min 11–max 94 years) with male predominance (68.5%). Most patients showed respiratory and/or systemic symptoms, and developed GBS manifestations after COVID-19. However, asymptomatic cases for COVID-19 were also described. The distributions of clinical variants and electrophysiological subtypes resemble those of classic GBS, with a higher prevalence of the classic sensorimotor form and the acute inflammatory demyelinating polyneuropathy, although rare variants like Miller Fisher syndrome were also reported. Cerebrospinal fluid (CSF) albuminocytological dissociation was present in around 71% cases, and CSF SARS-CoV-2 RNA was absent in all tested cases. More than 70% of patients showed a good prognosis, mostly after treatment with intravenous immunoglobulin. Patients with less favorable outcome were associated with a significantly older age in accordance with previous findings regarding both classic GBS and COVID-19. COVID-19-associated GBS seems to share most features of classic post-infectious GBS and possibly the same immune-mediated pathogenetic mechanisms. Nevertheless, more extensive epidemiological studies are needed to clarify these issues.

293 citations

Journal ArticleDOI
TL;DR: A 70-year-old-woman was referred to the emergency department (ED) on Mar-28 complaining of asthenia, hands and feet paresthesia and gait difficulties progressing within 1 day, and neurophysiologic findings were consistent with a diagnosis of GBS following a clinically resolved paucisymptomatic COVID-19.
Abstract: The coronavirus disease-2019 (COVID-19) pandemic originated in Wuhan (China) on December 2019. So far, more than 1,500,000 cases have been confirmed worldwide (> 150,000 cases in Italy) [1]. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is a systemic disorder typically presenting with fever, fatigue and prevalent respiratory disturbances (dry cough, dyspnea, chest pain, interstitial pneumonia) [2], although neurological manifestations are increasingly reported [3]. Guillain-Barré syndrome (GBS) is an acute/subacute immune-mediated polyradiculoneuropathy characterized by varying degrees of limbs or cranial-nerves weakness, loss of deep tendon reflexes, sensory and dysautonomic symptoms due to peripheral nerves and roots demyelination and/or axonal damage [4]. According to a recent review about twothird of all GBS are preceded by upper respiratory infection or enteritis [4]. Here we describe a case of GBS following a clinically resolved paucisymptomatic COVID-19. A 70-year-old-woman was referred to our emergency department (ED) on Mar-28 complaining of asthenia, hands and feet paresthesia and gait difficulties progressing within 1 day. On Mar-4 she had developed fever (body temperature—BT = 38.5 °C) and dry cough. A day later she had been tested positive for SARS-CoV-2-RNA on RT-PCR with a nasopharyngeal swab. Symptoms of COVID-19 had resolved in a few days. The epidemiological survey had revealed a previous hospital visit to an inpatient in an area with high incidence for COVID-19 (Piacenza, Italy) on Feb28, 29. At the ED admission BT was 36.5 °C, oxygen saturation was 98% on room air. Arterial blood gas analysis showed pO2 = 76 mmHg with normal p/f ratio (= 363). Hematological investigations revealed slightly increased white blood cells (10.41 × 109/L, normal = 4–10 × 109/L) with 8.15 × 109/L neutrophils (normal = 2–8 × 109/L) and lymphocytes in the normal range. D-dimer, creatine phosphokinase, blood glucose, hepatic and renal function were normal, as well as c-reactive protein, erythrocyte sedimentation rate, folate and vitamin B12 blood levels. A chest high-resolution computed tomography revealed some small “ground glass” areas in both lungs. A repeated nasopharyngeal swab for SARS-CoV-2-RNA was negative. Mycoplasma Pneumoniae and Cytomegalovirus (CMV) serology (IgM and IgG), Legionella Pneumophila and Streptococcus Pneumoniae urinary tests were unrevealing. The neurological examination disclosed moderate (Medical Research Council grade 4/5) symmetric distal upper and lower limbs weakness, loss of deep tendon reflexes, preserved light touch and pinprick sensation. On Mar-31 a lumbar puncture was performed. The cerebrospinal fluid (CSF) analysis revealed slight albumino-cytological dissociation (CSF proteins = 48 mg/dL, normal = 0–40 mg/dL, white blood cells = 1 × 106/L, normal = 0–8 × 106/L). Microbiologic testing on CSF was negative (including herpes simplex virus, varicella zoster virus, Epstein-Bar virus, CMV, HIV-1, Borrelia Burgdorferi IgM and IgG). Neurophysiologic findings were consistent with a diagnosis of GBS (Table 1), according to current criteria [5]. A trial with 400 mg/die intravenous immunoglobulin (IVIg) for 5 days was started. On Apr-1 the patient was intubated and mechanical ventilation was applied, because of respiratory failure due to the worsening of muscle weakness. * Matteo Foschi mattfos89@gmail.com

171 citations

Journal ArticleDOI
TL;DR: Support is support for the use of both RT-QuIC and t-tau assays as first line laboratory investigations for the clinical diagnosis of CJD and a secondary tauopathy in CJD subtypes VV2 and MV2K, correlating with increased p-t Tau levels in the CSF is demonstrated.
Abstract: The differential diagnosis of Creutzfeldt-Jakob disease (CJD) from other, sometimes treatable, neurological disorders is challenging, owing to the wide phenotypic heterogeneity of the disease. Real-time quaking-induced prion conversion (RT-QuIC) is a novel ultrasensitive in vitro assay, which, at variance with surrogate neurodegenerative biomarker assays, specifically targets the pathological prion protein (PrPSc). In the studies conducted to date in CJD, cerebrospinal fluid (CSF) RT-QuIC showed good diagnostic sensitivity (82–96%) and virtually full specificity. In the present study, we investigated the diagnostic value of both prion RT-QuIC and surrogate protein markers in a large patient population with suspected CJD and then evaluated the influence on CSF findings of the CJD type, and the associated amyloid-β (Aβ) and tau neuropathology. RT-QuIC showed an overall diagnostic sensitivity of 82.1% and a specificity of 99.4%. However, sensitivity was lower in CJD types linked to abnormal prion protein (PrPSc) type 2 (VV2, MV2K and MM2C) than in typical CJD (MM1). Among surrogate proteins markers (14-3-3, total (t)-tau, and t-tau/phosphorylated (p)-tau ratio) t-tau performed best in terms of both specificity and sensitivity for all sCJD types. Sporadic CJD VV2 and MV2K types demonstrated higher CSF levels of p-tau when compared to other sCJD types and this positively correlated with the amount of tiny tau deposits in brain areas showing spongiform change. CJD patients showed moderately reduced median Aβ42 CSF levels, with 38% of cases having significantly decreased protein levels in the absence of Aβ brain deposits. Our results: (1) support the use of both RT-QuIC and t-tau assays as first line laboratory investigations for the clinical diagnosis of CJD; (2) demonstrate a secondary tauopathy in CJD subtypes VV2 and MV2K, correlating with increased p-tau levels in the CSF and (3) provide novel insight into the issue of the accuracy of CSF p-tau and Aβ42 as markers of brain tauopathy and β-amyloidosis.

121 citations

Journal ArticleDOI
TL;DR: A systematic overview of the evidence regarding the utility of blood GFAP as a biomarker in neurological diseases is provided in this article , where the authors propose a model for GFAP concentration dynamics in different conditions and discuss the limitations that hamper the widespread use of GFAP in the clinical setting.
Abstract: Blood-derived biomarkers for brain and spinal cord diseases are urgently needed. The introduction of highly sensitive immunoassays led to a rapid increase in the number of potential blood-derived biomarkers for diagnosis and monitoring of neurological disorders. In 2018, the FDA authorized a blood test for clinical use in the evaluation of mild traumatic brain injury (TBI). The test measures levels of the astrocytic intermediate filament glial fibrillary acidic protein (GFAP) and neuroaxonal marker ubiquitin carboxy-terminal hydrolase L1. In TBI, blood GFAP levels are correlated with clinical severity and extent of intracranial pathology. Evidence also indicates that blood GFAP levels hold the potential to reflect, and might enable prediction of, worsening of disability in individuals with progressive multiple sclerosis. A growing body of evidence suggests that blood GFAP levels can be used to detect even subtle injury to the CNS. Most importantly, the successful completion of the ongoing validation of point-of-care platforms for blood GFAP might ameliorate the decision algorithms for acute neurological diseases, such as TBI and stroke, with important economic implications. In this Review, we provide a systematic overview of the evidence regarding the utility of blood GFAP as a biomarker in neurological diseases. We propose a model for GFAP concentration dynamics in different conditions and discuss the limitations that hamper the widespread use of GFAP in the clinical setting. In our opinion, the clinical use of blood GFAP measurements has the potential to contribute to accelerated diagnosis and improved prognostication, and represents an important step forward in the era of precision medicine. In this Review, the authors provide an overview of the evidence regarding the use of blood levels of glial fibrillary acidic protein as a biomarker in a range of neurological diseases, including traumatic brain injury, stroke, multiple sclerosis and Alzheimer disease.

107 citations

Journal ArticleDOI
TL;DR: CSF glial markers of neuroinflammation demonstrate limited diagnostic value but have some potential for monitoring the clinical and, possibly, preclinical phases of NDs.
Abstract: In neurodegenerative dementias (NDs) such as prion disease, Alzheimer’s disease (AD), and frontotemporal lobar degeneration (FTLD), protein misfolding leads to the tissue deposition of protein aggregates which, in turn, trigger neuroinflammation and neurodegeneration. Cerebrospinal fluid (CSF) biomarkers have the potential to reflect different aspects of these phenomena across distinct clinicopathological subtypes and disease stages. We investigated CSF glial markers, namely chitotriosidase 1 (CHIT1), chitinase-3-like protein 1 (YKL-40) and glial fibrillary acidic protein (GFAP) in prion disease subtypes (n = 101), AD (n = 40), clinicopathological subgroups of FTLD (n = 72), and controls (n = 40) using validated, commercially available ELISA assays. We explored glial biomarker levels’ associations with disease variables and neurodegenerative CSF biomarkers and evaluated their diagnostic accuracy. The genotype of the CHIT1 rs3831317 polymorphic site was also analyzed. Each ND group showed increased levels of CHIT1, YKL-40, and GFAP compared to controls with a difference between prion disease and AD or FTLD limited to YKL-40, which showed higher values in the former group. CHIT1 levels were reduced in both heterozygotes and homozygotes for the CHIT1 24-bp duplication (rs3831317) in FTLD and controls, but this effect was less significant in AD and prion disease. After stratification according to molecular subgroups, we demonstrated (i) an upregulation of all glial markers in Creutzfeldt-Jakob disease VV2 compared to other disease subtypes, (ii) a difference in CHIT1 levels between FTLD with TAU and TDP43 pathology, and (iii) a marked increase of YKL-40 in FTLD with amyotrophic lateral sclerosis (ALS) in comparison with FTLD without ALS. In prion disease, glial markers correlated with disease stage and were already elevated in one pre-symptomatic case of Gerstmann-Straussler-Scheinker disease. Regarding the diagnostic value, YKL-40 was the only glial marker that showed a moderate accuracy in the distinction between controls and NDs. NDs share a CSF profile characterized by increased levels of CSF CHIT1, YKL-40, and GFAP, which likely reflects a common neuroinflammatory response to protein misfolding and aggregation. CSF glial markers of neuroinflammation demonstrate limited diagnostic value but have some potential for monitoring the clinical and, possibly, preclinical phases of NDs.

87 citations


Cited by
More filters
01 Jan 2020
TL;DR: Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future.
Abstract: Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.

4,408 citations

Journal ArticleDOI
TL;DR: An overview of inflammation in AD is provided and a detailed coverage of a number of microglia‐related signaling mechanisms that have been implicated in AD are reviewed.

1,088 citations

Journal ArticleDOI
TL;DR: The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is of a scale not seen since the 1918 influenza pandemic and the proportion of infections leading to neurological disease will probably remain small.
Abstract: Summary Background The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is of a scale not seen since the 1918 influenza pandemic. Although the predominant clinical presentation is with respiratory disease, neurological manifestations are being recognised increasingly. On the basis of knowledge of other coronaviruses, especially those that caused the severe acute respiratory syndrome and Middle East respiratory syndrome epidemics, cases of CNS and peripheral nervous system disease caused by SARS-CoV-2 might be expected to be rare. Recent developments A growing number of case reports and series describe a wide array of neurological manifestations in 901 patients, but many have insufficient detail, reflecting the challenge of studying such patients. Encephalopathy has been reported for 93 patients in total, including 16 (7%) of 214 hospitalised patients with COVID-19 in Wuhan, China, and 40 (69%) of 58 patients in intensive care with COVID-19 in France. Encephalitis has been described in eight patients to date, and Guillain-Barre syndrome in 19 patients. SARS-CoV-2 has been detected in the CSF of some patients. Anosmia and ageusia are common, and can occur in the absence of other clinical features. Unexpectedly, acute cerebrovascular disease is also emerging as an important complication, with cohort studies reporting stroke in 2–6% of patients hospitalised with COVID-19. So far, 96 patients with stroke have been described, who frequently had vascular events in the context of a pro-inflammatory hypercoagulable state with elevated C-reactive protein, D-dimer, and ferritin. Where next? Careful clinical, diagnostic, and epidemiological studies are needed to help define the manifestations and burden of neurological disease caused by SARS-CoV-2. Precise case definitions must be used to distinguish non-specific complications of severe disease (eg, hypoxic encephalopathy and critical care neuropathy) from those caused directly or indirectly by the virus, including infectious, para-infectious, and post-infectious encephalitis, hypercoagulable states leading to stroke, and acute neuropathies such as Guillain-Barre syndrome. Recognition of neurological disease associated with SARS-CoV-2 in patients whose respiratory infection is mild or asymptomatic might prove challenging, especially if the primary COVID-19 illness occurred weeks earlier. The proportion of infections leading to neurological disease will probably remain small. However, these patients might be left with severe neurological sequelae. With so many people infected, the overall number of neurological patients, and their associated health burden and social and economic costs might be large. Health-care planners and policy makers must prepare for this eventuality, while the many ongoing studies investigating neurological associations increase our knowledge base.

884 citations

Journal ArticleDOI
TL;DR: Evidence that both CSF and blood NfL may serve as diagnostic, prognostic and monitoring biomarkers in neurological diseases is progressively increasing, and N fL is one of the most promising biomarkers to be used in clinical and research setting in the next future.
Abstract: In the management of neurological diseases, the identification and quantification of axonal damage could allow for the improvement of diagnostic accuracy and prognostic assessment. Neurofilament light chain (NfL) is a neuronal cytoplasmic protein highly expressed in large calibre myelinated axons. Its levels increase in cerebrospinal fluid (CSF) and blood proportionally to the degree of axonal damage in a variety of neurological disorders, including inflammatory, neurodegenerative, traumatic and cerebrovascular diseases. New immunoassays able to detect biomarkers at ultralow levels have allowed for the measurement of NfL in blood, thus making it possible to easily and repeatedly measure NfL for monitoring diseases’ courses. Evidence that both CSF and blood NfL may serve as diagnostic, prognostic and monitoring biomarkers in neurological diseases is progressively increasing, and NfL is one of the most promising biomarkers to be used in clinical and research setting in the next future. Here we review the most important results on CSF and blood NfL and we discuss its potential applications and future directions.

519 citations

Journal ArticleDOI
TL;DR: The COVID-19 pandemic, caused by SARS-CoV-2, is of a scale not seen since the 1918 influenza pandemic and so much of the population infected, the overall number of neurological patients, and their associated health, social and economic costs, may be large.
Abstract: Background: The COVID-19 pandemic, caused by SARS-CoV-2, is of a scale not seen since the 1918 influenza pandemic. Although the predominant clinical presentation is with respiratory disease, neurological manifestations are being recognised increasingly. Based on knowledge of other coronaviruses, especially those that caused the SARS and MERS epidemics, we might expect to see rare cases of central nervous system (CNS) and peripheral nervous system (PNS) disease caused by SARS-CoV-2. Recent developments: A growing number of case reports and series describe a wide array of neurological manifestations, but many lack detail, reflecting the challenge of studying such patients. Encephalopathy is relatively common, being reported for 93 patients in total, including 16 (7.5%) of 214 hospitalised COVID-19 patients in Wuhan, China, and 40 (69%) of 58 in intensive care with COVID-19 in France. Encephalitis has been described in 8 patients to date, and Guillain-Barre syndrome in 19 patients. SARS-CoV-2 is detected in the cerebrospinal fluid of some patients. Anosmia and ageusia are common and may occur in the absence of other clinical features. Unexpectedly, acute cerebrovascular disease is also emerging as an important complication, with cohort studies reporting stroke in 1.6-6% of hospitalised COVID-19 cases. So far, 88 patients have been described, mostly with ischaemic stroke, who frequently have vascular events in the context of a pro-inflammatory hypercoagulable state with elevated CRP, D-dimer, and ferritin. Where next?: Careful clinical, diagnostic and epidemiological studies are needed to help define the manifestations and burden of neurological disease caused by SARS-CoV-2. Precise case definitions must be used to distinguish non-specific complications of severe disease, such as hypoxic encephalopathy and critical care neuropathy, from those caused directly or indirectly by the virus; these include infectious, para- and post-infectious encephalitis, hypercoagulable states leading to stroke, and acute neuropathies such as Guillain-Barre syndrome. Recognising SARS-CoV-2 neurological disease in patients whose respiratory infection is mild or asymptomatic may prove challenging, especially if the primary COVID-19 illness occurred weeks earlier. The proportion of infections leading to neurological disease will remain small. However, these patients may be left with severe neurological sequelae. With so much of the population infected, the overall number of neurological patients, and their associated health, social and economic costs, may be large. Healthcare planners and policymakers must prepare for this eventuality. The many ongoing studies investigating the neurological association will increase our knowledge base.

458 citations