scispace - formally typeset
Search or ask a question
Author

Samir D. Sharma

Bio: Samir D. Sharma is an academic researcher from University of Wisconsin-Madison. The author has contributed to research in topics: Quantitative susceptibility mapping & Imaging phantom. The author has an hindex of 14, co-authored 20 publications receiving 783 citations. Previous affiliations of Samir D. Sharma include Ohio State University & University of Southern California.

Papers
More filters
Journal ArticleDOI
TL;DR: MRI‐PDFF is an accurate, precise, and reader‐independent noninvasive imaging biomarker of liver triglyceride content, capable of steatosis quantification over the entire liver.

115 citations

Journal ArticleDOI
TL;DR: This paper, written by members of the Standards for Quantitative Magnetic Resonance committee, reviews standardization attempts and then details the need, requirements, and implementation plan for a standard system phantom for quantitative MRI.
Abstract: The MRI community is using quantitative mapping techniques to complement qualitative imaging. For quantitative imaging to reach its full potential, it is necessary to analyze measurements across systems and longitudinally. Clinical use of quantitative imaging can be facilitated through adoption and use of a standard system phantom, a calibration/standard reference object, to assess the performance of an MRI machine. The International Society of Magnetic Resonance in Medicine AdHoc Committee on Standards for Quantitative Magnetic Resonance was established in February 2007 to facilitate the expansion of MRI as a mainstream modality for multi-institutional measurements, including, among other things, multicenter trials. The goal of the Standards for Quantitative Magnetic Resonance committee was to provide a framework to ensure that quantitative measures derived from MR data are comparable over time, between subjects, between sites, and between vendors. This paper, written by members of the Standards for Quantitative Magnetic Resonance committee, reviews standardization attempts and then details the need, requirements, and implementation plan for a standard system phantom for quantitative MRI. In addition, application-specific phantoms and implementation of quantitative MRI are reviewed. Magn Reson Med 79:48-61, 2018. © 2017 International Society for Magnetic Resonance in Medicine.

112 citations

Proceedings ArticleDOI
27 Apr 2007
TL;DR: In this paper, a model-based approach was proposed to resolve the target features and enhance the volumetric imagery by extrapolating the phase history data using the estimated model.
Abstract: We study circular synthetic aperture radar (CSAR) systems collecting radar backscatter measurements over a complete circular aperture of 360 degrees. This study is motivated by the GOTCHA CSAR data collection experiment conducted by the Air Force Research Laboratory (AFRL). Circular SAR provides wide-angle information about the anisotropic reflectivity of the scattering centers in the scene, and also provides three dimensional information about the location of the scattering centers due to a non planar collection geometry. Three dimensional imaging results with single pass circular SAR data reveals that the 3D resolution of the system is poor due to the limited persistence of the reflectors in the scene. We present results on polarimetric processing of CSAR data and illustrate reasoning of three dimensional shape from multi-view layover using prior information about target scattering mechanisms. Next, we discuss processing of multipass (CSAR) data and present volumetric imaging results with IFSAR and three dimensional backprojection techniques on the GOTCHA data set. We observe that the volumetric imaging with GOTCHA data is degraded by aliasing and high sidelobes due to nonlinear flightpaths and sparse and unequal sampling in elevation. We conclude with a model based technique that resolves target features and enhances the volumetric imagery by extrapolating the phase history data using the estimated model.

100 citations

Journal ArticleDOI
TL;DR: The proposed technique was used to estimate the susceptibility map in the abdomen, from which hepatic iron overload was measured, and high correlation between liver susceptibility and liver R2* was observed.
Abstract: Purpose: The purpose of this work was to develop and demonstrate feasibility and initial clinical validation of quantitative susceptibility mapping (QSM) in the abdomen as an imaging biomarker of hepatic iron overload. Theory and Methods: In general, QSM is faced with the challenges of background field removal and dipole inversion. Respiratory motion, the presence of fat, and severe iron overload further complicate QSM in the abdomen. We propose a technique for QSM in the abdomen that addresses these challenges. Data were acquired from 10 subjects without hepatic iron overload and 33 subjects with known or suspected iron overload. The proposed technique was used to estimate the susceptibility map in the abdomen, from which hepatic iron overload was measured. As a reference, spin-echo data were acquired for R2-based LIC estimation. Liver R2* was measured for correlation with liver susceptibility estimates. Results: Correlation between susceptibility and R2-based LIC estimation was R2 = 0.76 at 1.5 Tesla (T) and R2 = 0.83 at 3T. Furthermore, high correlation between liver susceptibility and liver R2* (R2 = 0.94 at 1.5T; R2 = 0.93 at 3T) was observed. Conclusion: We have developed and demonstrated initial validation of QSM in the abdomen as an imaging biomarker of hepatic iron overload. Magn Reson Med 74:673–683, 2015. © 2014 Wiley Periodicals, Inc.

99 citations

Journal ArticleDOI
TL;DR: To evaluate the accuracy and reproducibility of quantitative chemical shift‐encoded (CSE) MRI to quantify proton‐density fat‐fraction (PDFF) in a fat–water phantom across sites, vendors, field strengths, and protocols.
Abstract: Author(s): Hernando, Diego; Sharma, Samir D; Aliyari Ghasabeh, Mounes; Alvis, Bret D; Arora, Sandeep S; Hamilton, Gavin; Pan, Li; Shaffer, Jean M; Sofue, Keitaro; Szeverenyi, Nikolaus M; Welch, E Brian; Yuan, Qing; Bashir, Mustafa R; Kamel, Ihab R; Rice, Mark J; Sirlin, Claude B; Yokoo, Takeshi; Reeder, Scott B | Abstract: PurposeTo evaluate the accuracy and reproducibility of quantitative chemical shift-encoded (CSE) MRI to quantify proton-density fat-fraction (PDFF) in a fat-water phantom across sites, vendors, field strengths, and protocols.MethodsSix sites (Philips, Siemens, and GE Healthcare) participated in this study. A phantom containing multiple vials with various oil/water suspensions (PDFF:0%-100%) was built, shipped to each site, and scanned at 1.5T and 3T using two CSE protocols per field strength. Confounder-corrected PDFF maps were reconstructed using a common algorithm. To assess accuracy, PDFF bias and linear regression with the known PDFF were calculated. To assess reproducibility, measurements were compared across sites, vendors, field strengths, and protocols using analysis of covariance (ANCOVA), Bland-Altman analysis, and the intraclass correlation coefficient (ICC).ResultsPDFF measurements revealed an overall absolute bias (across sites, field strengths, and protocols) of 0.22% (95% confidence interval, 0.07%-0.38%) and R2 g 0.995 relative to the known PDFF at each site, field strength, and protocol, with a slope between 0.96 and 1.02 and an intercept between -0.56% and 1.13%. ANCOVA did not reveal effects of field strength (P = 0.36) or protocol (P = 0.19). There was a significant effect of vendor (F = 25.13, P = 1.07 × 10-10 ) with a bias of -0.37% (Philips) and -1.22% (Siemens) relative to GE Healthcare. The overall ICC was 0.999.ConclusionCSE-based fat quantification is accurate and reproducible across sites, vendors, field strengths, and protocols. Magn Reson Med 77:1516-1524, 2017. © 2016 International Society for Magnetic Resonance in Medicine.

93 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper provides first a tutorial about the SAR principles and theory, followed by an overview of established techniques like polarimetry, interferometry and differential interferometric as well as of emerging techniques (e.g., polarimetric SARinterferometry, tomography and holographic tomography).
Abstract: Synthetic Aperture Radar (SAR) has been widely used for Earth remote sensing for more than 30 years. It provides high-resolution, day-and-night and weather-independent images for a multitude of applications ranging from geoscience and climate change research, environmental and Earth system monitoring, 2-D and 3-D mapping, change detection, 4-D mapping (space and time), security-related applications up to planetary exploration. With the advances in radar technology and geo/bio-physical parameter inversion modeling in the 90s, using data from several airborne and spaceborne systems, a paradigm shift occurred from the development driven by the technology push to the user demand pull. Today, more than 15 spaceborne SAR systems are being operated for innumerous applications. This paper provides first a tutorial about the SAR principles and theory, followed by an overview of established techniques like polarimetry, interferometry and differential interferometry as well as of emerging techniques (e.g., polarimetric SAR interferometry, tomography and holographic tomography). Several application examples including the associated parameter inversion modeling are provided for each case. The paper also describes innovative technologies and concepts like digital beamforming, Multiple-Input Multiple-Output (MIMO) and bi- and multi-static configurations which are suitable means to fulfill the increasing user requirements. The paper concludes with a vision for SAR remote sensing.

1,614 citations

Journal Article
TL;DR: This study is the first to establish reference and normal values for PWV, combining a sizeable European population after standardizing results for different methods of PWV measurement.
Abstract: Aims Carotid–femoral pulse wave velocity (PWV), a direct measure of aortic stiffness, has become increasingly important for total cardiovascular (CV) risk estimation. Its application as a routine tool for clinical patient evaluation has been hampered by the absence of reference values. The aim of the present study is to establish reference and normal values for PWV based on a large European population. Methods and results We gathered data from 16 867 subjects and patients from 13 different centres across eight European countries, in which PWV and basic clinical parameters were measured. Of these, 11 092 individuals were free from overt CV disease, non-diabetic and untreated by either anti-hypertensive or lipid-lowering drugs and constituted the reference value population, of which the subset with optimal/normal blood pressures (BPs) (n = 1455) is the normal value population. Prior to data pooling, PWV values were converted to a common standard using established conversion formulae. Subjects were categorized by age decade and further subdivided according to BP categories. Pulse wave velocity increased with age and BP category; the increase with age being more pronounced for higher BP categories and the increase with BP being more important for older subjects. The distribution of PWV with age and BP category is described and reference values for PWV are established. Normal values are proposed based on the PWV values observed in the non-hypertensive subpopulation who had no additional CV risk factors. Conclusion The present study is the first to establish reference and normal values for PWV, combining a sizeable European population after standardizing results for different methods of PWV measurement.

1,371 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a short overview of recent advances and some associated challenges in machine learning applied to medical image processing and image analysis, and provide a starting point for people interested in experimenting and perhaps contributing to the field of machine learning for medical imaging.
Abstract: What has happened in machine learning lately, and what does it mean for the future of medical image analysis? Machine learning has witnessed a tremendous amount of attention over the last few years. The current boom started around 2009 when so-called deep artificial neural networks began outperforming other established models on a number of important benchmarks. Deep neural networks are now the state-of-the-art machine learning models across a variety of areas, from image analysis to natural language processing, and widely deployed in academia and industry. These developments have a huge potential for medical imaging technology, medical data analysis, medical diagnostics and healthcare in general, slowly being realized. We provide a short overview of recent advances and some associated challenges in machine learning applied to medical image processing and image analysis. As this has become a very broad and fast expanding field we will not survey the entire landscape of applications, but put particular focus on deep learning in MRI. Our aim is threefold: (i) give a brief introduction to deep learning with pointers to core references; (ii) indicate how deep learning has been applied to the entire MRI processing chain, from acquisition to image retrieval, from segmentation to disease prediction; (iii) provide a starting point for people interested in experimenting and perhaps contributing to the field of machine learning for medical imaging by pointing out good educational resources, state-of-the-art open-source code, and interesting sources of data and problems related medical imaging.

991 citations

Journal ArticleDOI
25 Feb 2010
TL;DR: The accessible framework provided by compressed sensing illuminates the impact of joining these themes and potential future directions are conjectured both for extension of theory motivated by practice and for modification of practice based on theoretical insights.
Abstract: Remote sensing with radar is typically an ill-posed linear inverse problem: a scene is to be inferred from limited measurements of scattered electric fields. Parsimonious models provide a compressed representation of the unknown scene and offer a means for regularizing the inversion task. The emerging field of compressed sensing combines nonlinear reconstruction algorithms and pseudorandom linear measurements to provide reconstruction guarantees for sparse solutions to linear inverse problems. This paper surveys the use of sparse reconstruction algorithms and randomized measurement strategies in radar processing. Although the two themes have a long history in radar literature, the accessible framework provided by compressed sensing illuminates the impact of joining these themes. Potential future directions are conjectured both for extension of theory motivated by practice and for modification of practice based on theoretical insights.

709 citations

Journal ArticleDOI
TL;DR: This paper indicates how deep learning has been applied to the entire MRI processing chain, from acquisition to image retrieval, from segmentation to disease prediction, and provides a starting point for people interested in experimenting and contributing to the field of deep learning for medical imaging.
Abstract: What has happened in machine learning lately, and what does it mean for the future of medical image analysis? Machine learning has witnessed a tremendous amount of attention over the last few years. The current boom started around 2009 when so-called deep artificial neural networks began outperforming other established models on a number of important benchmarks. Deep neural networks are now the state-of-the-art machine learning models across a variety of areas, from image analysis to natural language processing, and widely deployed in academia and industry. These developments have a huge potential for medical imaging technology, medical data analysis, medical diagnostics and healthcare in general, slowly being realized. We provide a short overview of recent advances and some associated challenges in machine learning applied to medical image processing and image analysis. As this has become a very broad and fast expanding field we will not survey the entire landscape of applications, but put particular focus on deep learning in MRI. Our aim is threefold: (i) give a brief introduction to deep learning with pointers to core references; (ii) indicate how deep learning has been applied to the entire MRI processing chain, from acquisition to image retrieval, from segmentation to disease prediction; (iii) provide a starting point for people interested in experimenting and perhaps contributing to the field of deep learning for medical imaging by pointing out good educational resources, state-of-the-art open-source code, and interesting sources of data and problems related medical imaging.

590 citations