scispace - formally typeset
Search or ask a question
Author

Samir J. Anz

Bio: Samir J. Anz is an academic researcher from University of California, Los Angeles. The author has contributed to research in topics: Spectroscopy & Ion. The author has an hindex of 9, co-authored 17 publications receiving 3378 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A number of important photophysical properties of C{sub 60} have been determined, including its lowest triplet state energy (near 33 kcal/mol), lifetime, and triplet-triplet absorption spectrum as mentioned in this paper.
Abstract: A number of important photophysical properties of C{sub 60} have been determined, including its lowest triplet-state energy (near 33 kcal/mol), lifetime, and triplet-triplet absorption spectrum. The triplet state is formed in near quantitative yield and produces a very high yield of singlet oxygen by energy transfer. C{sub 60} does not react with singlet molecular oxygen and quenches it only slowly by an unknown mechanism. These results are discussed in terms of the unusual geometry of this molecule.

1,098 citations

Journal ArticleDOI
TL;DR: In this paper, the physical and chemical characterization of two new molecular forms of carbon, C{sub 60} and C {sub 70} were reported. But the results demonstrate a high yield of production (14%) under optimized conditions and reveal only C{ sub 60 and Csub 70 in measurable quantity, in an 85:15 ratio.
Abstract: The authors report on the further physical and chemical characterization of the new forms of molecular carbon, C{sub 60} and C{sub 70}. Results demonstrate a high yield of production (14%) under optimized conditions and reveal only C{sub 60} and C{sub 70} in measurable quantity, in an 85:15 ratio. These two new molecular forms of carbon can be completely separated in analytical amounts by column chromatography on alumina. Comparison among mass spectra obtained by the electron impact, laser desorption, and fast atom bombardment (FAB) methods allows a clear assessment of the composition of the mixed and pure samples, and of the fragmentation and double ionization patterns of the molecules. In addition, spectroscopic analyses are reported for the crude mixture by {sup 13}C NMR and by IR spectroscopy in KBr pellet, and for pure C{sub 60} and C{sub 70} in solution by UV-vis spectroscopy.

727 citations

Journal ArticleDOI
26 Apr 1991-Science
TL;DR: The toluene extract of the fluffy carbon material produced by resistive heating of graphite contains a variety of molecules larger than C60 and C70 in a total amount of 3 to 4% by weight that are identified as higher fullerenes.
Abstract: The toluene extract of the fluffy carbon material produced by resistive heating of graphite contains a variety of molecules larger than C(60) and C(70) in a total amount of 3 to 4% by weight. Repeated chromatography of this material on neutral alumina has led to the isolation of stable solid samples of C(76), C(84), C(90), and C(94). The characterization, which includes mass spectrometry, (13)C nuclear magnetic resonance, electronic absorption (ultraviolet/visible) and vibrational (infrared) spectroscopy identifies these all-carbon molecules as higher fullerenes. In addition, C(70)O, a stable oxide, has been isolated that is structurally and electronically closely related to D5h-C(70). This compound forms during the resistive heating process and probably has an oxygen atom inserted between two carbon atoms on the convex external surface of the C(70) skeleton.

598 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review gives a general introduction to the materials, production techniques, working principles, critical parameters, and stability of the organic solar cells, and discusses the alternative approaches such as polymer/polymer solar cells and organic/inorganic hybrid solar cells.
Abstract: The need to develop inexpensive renewable energy sources stimulates scientific research for efficient, low-cost photovoltaic devices.1 The organic, polymer-based photovoltaic elements have introduced at least the potential of obtaining cheap and easy methods to produce energy from light.2 The possibility of chemically manipulating the material properties of polymers (plastics) combined with a variety of easy and cheap processing techniques has made polymer-based materials present in almost every aspect of modern society.3 Organic semiconductors have several advantages: (a) lowcost synthesis, and (b) easy manufacture of thin film devices by vacuum evaporation/sublimation or solution cast or printing technologies. Furthermore, organic semiconductor thin films may show high absorption coefficients4 exceeding 105 cm-1, which makes them good chromophores for optoelectronic applications. The electronic band gap of organic semiconductors can be engineered by chemical synthesis for simple color changing of light emitting diodes (LEDs).5 Charge carrier mobilities as high as 10 cm2/V‚s6 made them competitive with amorphous silicon.7 This review is organized as follows. In the first part, we will give a general introduction to the materials, production techniques, working principles, critical parameters, and stability of the organic solar cells. In the second part, we will focus on conjugated polymer/fullerene bulk heterojunction solar cells, mainly on polyphenylenevinylene (PPV) derivatives/(1-(3-methoxycarbonyl) propyl-1-phenyl[6,6]C61) (PCBM) fullerene derivatives and poly(3-hexylthiophene) (P3HT)/PCBM systems. In the third part, we will discuss the alternative approaches such as polymer/polymer solar cells and organic/inorganic hybrid solar cells. In the fourth part, we will suggest possible routes for further improvements and finish with some conclusions. The different papers mentioned in the text have been chosen for didactical purposes and cannot reflect the chronology of the research field nor have a claim of completeness. The further interested reader is referred to the vast amount of quality papers published in this field during the past decade.

6,059 citations

Journal ArticleDOI
27 Nov 1992-Science
TL;DR: Because the photoluminescence in the conducting polymer is quenched by interaction with C60, the data imply that charge transfer from the excited state occurs on a picosecond time scale.
Abstract: Evidence for photoinduced electron transfer from the excited state of a conducting polymer onto buckminsterfullerene, C(60), is reported. After photo-excitation of the conjugated polymer with light of energy greater than the pi-pi* gap, an electron transfer to the C(60) molecule is initiated. Photoinduced optical absorption studies demonstrate a different excitation spectrum for the composite as compared to the separate components, consistent with photo-excited charge transfer. A photoinduced electron spin resonance signal exhibits signatures of both the conducting polymer cation and the C(60) anion. Because the photoluminescence in the conducting polymer is quenched by interaction with C(60), the data imply that charge transfer from the excited state occurs on a picosecond time scale. The charge-separated state in composite films is metastable at low temperatures.

4,016 citations

Journal ArticleDOI
TL;DR: Polymer-based organic photovoltaic systems hold the promise for a cost-effective, lightweight solar energy conversion platform, which could benefit from simple solution processing of the active layer.
Abstract: Fossil fuel alternatives, such as solar energy, are moving to the forefront in a variety of research fields. Polymer-based organic photovoltaic systems hold the promise for a cost-effective, lightweight solar energy conversion platform, which could benefit from simple solution processing of the active layer. The function of such excitonic solar cells is based on photoinduced electron transfer from a donor to an acceptor. Fullerenes have become the ubiquitous acceptors because of their high electron affinity and ability to transport charge effectively. The most effective solar cells have been made from bicontinuous polymer–fullerene composites, or so-called bulk heterojunctions. The best solar cells currently achieve an efficiency of about 5 %, thus significant advances in the fundamental understanding of the complex interplay between the active layer morphology and electronic properties are required if this technology is to find viable application.

3,911 citations

Journal ArticleDOI
TL;DR: Fluorene-Based Copolymers ContainingPhosphorescent Complexes and Carbazole-Based Conjugated Polymers R5.1.3.
Abstract: -phenylenevinylene)s L4. Fluorene-Based Conjugated Polymers L4.1. Fluorene-Based Copolymers ContainingElectron-Rich MoietiesM4.2. Fluorene-Based Copolymers ContainingElectron-Deficient MoietiesN4.3. Fluorene-Based Copolymers ContainingPhosphorescent ComplexesQ5. Carbazole-Based Conjugated Polymers R5.1. Poly(2,7-carbazole)-Based Polymers R5.2. Indolo[3,2-

3,686 citations

Journal ArticleDOI
TL;DR: In this paper, the double heterojunction was proposed to confine excitons within the active layers, allowing substantially higher internal efficiencies to be achieved, and a full optical and electrical analysis of the double-heterostructure architecture leads to optimal cell design as a function of the optical properties and exciton diffusion lengths of the photoactive materials.
Abstract: In this review, we discuss the physics underlying the operation of single and multiple heterojunction, vacuum-deposited organic solar cells based on small molecular weight thin films. For single heterojunction cells, we find that the need for direct contact between the deposited electrode and the active organics leads to quenching of excitons. An improved device architecture, the double heterojunction, is shown to confine excitons within the active layers, allowing substantially higher internal efficiencies to be achieved. A full optical and electrical analysis of the double heterostructure architecture leads to optimal cell design as a function of the optical properties and exciton diffusion lengths of the photoactive materials. Combining the double heterostructure with novel light trapping schemes, devices with external efficiencies approaching their internal efficiency are obtained. When applied to an organic photovoltaic cell with a power conversion efficiency of 1.0%±0.1% under 1 sun AM1.5 illuminati...

2,722 citations