scispace - formally typeset
Search or ask a question
Author

Samir Kumar Sadhu

Bio: Samir Kumar Sadhu is an academic researcher from Khulna University. The author has contributed to research in topics: DPPH & Chemistry. The author has an hindex of 20, co-authored 87 publications receiving 1488 citations. Previous affiliations of Samir Kumar Sadhu include Josai International University & Chiba University.


Papers
More filters
Journal ArticleDOI
TL;DR: According to the traditional usage of the plant for antiinflammation and analgesia, Leucas aspera was tested for its prostaglandin (PG) inhibitory and antioxidant activities and LA-8 was determined to be (-)-chicanine, the new antipode of the (+) compound by spectroscopic methods including CD and ORD.
Abstract: According to the traditional usage of the plant for antiinflammation and analgesia, Leucas aspera was tested for its prostaglandin (PG) inhibitory and antioxidant activities. The extract showed both activities, i.e., inhibition at 3 x 10(-4) g/ml against PGE(1)- and PGE(2)-induced contractions in guinea pig ileum and a 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging effect. The separation guided by the activities in these dual assay methods provided eight lignans and four flavonoids, LA-1- -12, among which LA-1- -7 and LA-10- -12 were identified as nectandrin B, meso-dihydroguaiaretic acid, macelignan, acacetin, apigenin 7-O-[6"-O-(p-coumaroyl)-beta-D-glucoside], chrysoeriol, apigenin, erythro-2-(4-allyl-2, 6-dimethoxyphenoxy)-1-(4-hydroxy-3-methoxyphenyl)propan-1-ol, myristargenol B, and machilin C, respectively. LA-8 was determined to be (-)-chicanine, the new antipode of the (+) compound, by spectroscopic methods including CD and ORD. Chiral-HPLC analysis of LA-9 showed that it was a mixture of two enantiomers, (7R, 8R)- and (7S, 8S)-licarin A. All of these components were first isolated from L. aspera. PG inhibition was observed in LA-1, LA-2, and LA-5, and antioxidant activity in LA-1- -3 and LA-8- -12.

209 citations

Journal ArticleDOI
TL;DR: In this paper, the authors have evaluated the ethanolic extract of Dendrophthoe falcata leaves for their antioxidant, antinociceptive, and general toxicity.
Abstract: Plants have been used in traditional medicinal system for centuries. Bangladeshi medicinal plants have received considerable attention from the researchers for evaluation of their bioactivity. As a part of our ongoing research of screening the Bangladeshi medicinal plants, the ethanolic extract of Dendrophthoe falcata have been chosen for the present study. The ethanolic extract of the leaves of the plant have been assessed for their antioxidant, antinociceptive, and general toxicity. The extract showed potent antioxidant activity (IC50 5.1 μg/ml) using DPPH radical scavenging assay, which is comparable to the standard ascorbic acid (IC50 4.6 μg/ml). The extract significantly and dose dependently inhibited the acetic acid induced writhing in mice (71.2%, P < 0.001 and 28.0%, P < 0.05 for 500 and 250 mg/kg body weight, respectively). A general toxicity was assessed by a simple and low cost assay using brine shrimp lethality as an indicator. The extract showed low level of toxicity (LC50 100 μg/ml). Using different chromatographic techniques, quercitrin (quercetin 3-O-α-rhamnoside) was separated as the major component from the extract. The structure was elucidated by detailed 1D and 2D NMR and mass spectral analysis.

92 citations

Journal ArticleDOI
TL;DR: The extract significantly and dose-dependently reduced the writhing reflex in the acetic acid-induced writhing test and increased the total sleeping time at 250 and 500 mg/kg dose.

90 citations

Journal ArticleDOI
TL;DR: In this paper, lignan glycosides, lyoniside, nudiposide, 5-methoxy-9-β-xylopyranosyl-(−)-isolariciresinol, icariside E3, and schizandriside, together with β-sitosterol glucoside were isolated from a methyl alcohol extract of Saraca asoca dried bark, and their structures were determined by 1D and 2D nuclear magnetic resonance (NMR) and mass spectroscopic analysis.
Abstract: Five lignan glycosides, lyoniside, nudiposide, 5-methoxy-9-β-xylopyranosyl-(−)-isolariciresinol, icariside E3, and schizandriside, and three flavonoids, (−)-epicatechin, epiafzelechin-(4β→8)-epicatechin and procyanidin B2, together with β-sitosterol glucoside, were isolated from a methyl alcohol (MeOH) extract of Saraca asoca dried bark. Their structures were determined by 1D and 2D nuclear magnetic resonance (NMR) and mass spectroscopic analysis. Antioxidant activities were evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging assay.

76 citations

Journal Article
TL;DR: Scoparinol, a diterpene, isolated from Scoparia dulcis showed significant analgesic and anti-inflammatory activity and sedative action in animals by a marked potentiation of pentobarbital-induced sedation.
Abstract: Scoparinol, a diterpene, isolated from Scoparia dulcis showed significant analgesic (p < 0.001) and anti-inflammatory activity (p < 0.01) in animals. A sedative action of scoparinol was demonstrated by a marked potentiation of pentobarbital-induced sedation with a significant effect on both onset and duration of sleep (p < 0.05). Measurement of urine volume after administration of scoparinol indicated its significant diuretic action.

70 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This review covers the literature published in 2014 for marine natural products, with 1116 citations referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms.

4,649 citations

Journal ArticleDOI
TL;DR: The phytochemistry and pharmacological actions of all Punica granatum components suggest a wide range of clinical applications for the treatment and prevention of cancer, as well as other diseases where chronic inflammation is believed to play an essential etiologic role.

1,192 citations

Journal ArticleDOI
TL;DR: The distribution of ka Kempferol in the plant kingdom and its pharmacological properties are reviewed and the pharmacokinetics and safety of kaempferol are analyzed to help understand the health benefits of kaEMPferol-containing plants and to develop this flavonoid as a possible agent for the prevention and treatment of some diseases.
Abstract: Epidemiological studies have revealed that a diet rich in plant-derived foods has a protective effect on human health. Identifying bioactive dietary constituents is an active area of scientific investigation that may lead to new drug discovery. Kaempferol (3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one) is a flavonoid found in many edible plants (e.g. tea, broccoli, cabbage, kale, beans, endive, leek, tomato, strawberries and grapes) and in plants or botanical products commonly used in traditional medicine (e.g. Ginkgo biloba, Tilia spp, Equisetum spp, Moringa oleifera, Sophora japonica and propolis). Some epidemiological studies have found a positive association between the consumption of foods containing kaempferol and a reduced risk of developing several disorders such as cancer and cardiovascular diseases. Numerous preclinical studies have shown that kaempferol and some glycosides of kaempferol have a wide range of pharmacological activities, including antioxidant, anti-inflammatory, antimicrobial, anticancer, cardioprotective, neuroprotective, antidiabetic, anti-osteoporotic, estrogenic/antiestrogenic, anxiolytic, analgesic and antiallergic activities. In this article, the distribution of kaempferol in the plant kingdom and its pharmacological properties are reviewed. The pharmacokinetics (e.g. oral bioavailability, metabolism, plasma levels) and safety of kaempferol are also analyzed. This information may help understand the health benefits of kaempferol-containing plants and may contribute to develop this flavonoid as a possible agent for the prevention and treatment of some diseases.

987 citations