scispace - formally typeset
Search or ask a question

Showing papers by "Samir R. Das published in 1999"


Proceedings ArticleDOI
11 Oct 1999
TL;DR: An analytic modeling framework is developed to determine the relative frequency of query floods for various techniques and shows that while multipath routing is significantly better than single path routing, the performance advantage is small beyond a few paths and for long path lengths.
Abstract: Mobile ad hoc networks are characterized by multi-hop wireless links, absence of any cellular infrastructure, and frequent host mobility. Design of efficient routing protocols in such networks is a challenging issue. A class of routing protocols called on-demand protocols has recently attracted attention because of their low routing overhead. The on-demand protocols depend on query floods to discover routes whenever a new route is needed. Such floods take up a substantial portion of network bandwidth. We focus on a particular on-demand protocol, called dynamic source routing, and show how intelligent use of multipath techniques can reduce the frequency of query floods. We develop an analytic modeling framework to determine the relative frequency of query floods for various techniques. Results show that while multipath routing is significantly better than single path routing, the performance advantage is small beyond a few paths and for long path lengths. It also shows that providing all intermediate nodes in the primary (shortest) route with alternative paths has a significantly better performance than providing only the source with alternate paths.

630 citations


Proceedings ArticleDOI
21 Sep 1999
TL;DR: It is shown via simulations that this new carrier-sense multiple access (CSMA) protocol provides a higher throughput compared to its single channel counterpart by reducing the packet loss due to collisions and the use of channel reservation provides better performance than multichannel CSMA with purely random idle channel selection.
Abstract: We describe a new carrier-sense multiple access (CSMA) protocol for multihop wireless networks, sometimes also called ad hoc networks. The CSMA protocol divides the available bandwidth into several channels and selects an idle channel randomly for packet transmission. It also employs a notion of "soft" channel reservation as it gives preference to the channel that was used for the last successful transmission. We show via simulations that this multichannel CSMA protocol provides a higher throughput compared to its single channel counterpart by reducing the packet loss due to collisions. We also show that the use of channel reservation provides better performance than multichannel CSMA with purely random idle channel selection.

402 citations


Proceedings ArticleDOI
01 Aug 1999
TL;DR: This work utilizes prior routing histories to localize the query flood to a limited region of the network, which contributes to a reduced level of network congestion and better end-to-end delay performance of data packets.
Abstract: Mobile ad hoc networks are characterized by multi-hop wireless links, absence of any cellular infrastructure, and frequent host mobility. Design of efficient routing protocols in such networks is a challenging issue. A class of routing protocols called on-demand protocols has recently found attention because of their low routing overhead. We propose a technique that can reduce the routing overhead even further. The on-demand protocols depend on query floods to discover routes whenever a new route is needed. Our technique utilizes prior routing histories to localize the query flood to a limited region of the network. Simulation results demonstrate excellent reduction of routing overheads with this mechanism. This also contributes to a reduced level of network congestion and better end-to-end delay performance of data packets.

162 citations