scispace - formally typeset
Search or ask a question
Author

Samir R. Das

Bio: Samir R. Das is an academic researcher from Stony Brook University. The author has contributed to research in topics: Wireless network & Physics. The author has an hindex of 58, co-authored 186 publications receiving 29007 citations. Previous affiliations of Samir R. Das include University of Texas at San Antonio & University of Cincinnati.


Papers
More filters
Proceedings ArticleDOI
12 Nov 2006
TL;DR: This article presents a polynomial-time centralized approximation algorithm that provably delivers a solution whose benefit is at least 1/4 (1/2 for uniform-size data items) of the optimal benefit of the cache placement problem of minimizing total data access cost in ad hoc networks with multiple data items and nodes with limited memory capacity.
Abstract: Data caching can significantly improve the efficiency of information access in a wireless ad hoc network by reducing the access latency and bandwidth usage. However, designing efficient distributed caching algorithms is non-trivial when network nodes have limited memory. In this article, we consider the cache placement problem of minimizing total data access cost in ad hoc networks with multiple data items and nodes with limited memory capacity. The above optimization problem is known to be NP-hard. Defining benefit as the reduction in total access cost, we present a polynomial-time centralized approximation algorithm that provably delivers a solution whose benefit is at least one-fourth (one-half for uniform-size data items) of the optimal benefit. The approximation algorithm is amenable to localized distributed implementation, which is shown via simulations to perform close to the approximation algorithm. Our distributed algorithm naturally extends to networks with mobile nodes. We simulate our distributed algorithm using a network simulator (ns2), and demonstrate that it significantly outperforms another existing caching technique (by Yin and Cao [30]) in all important performance metrics. The performance differential is particularly large in more challenging scenarios, such as higher access frequency and smaller memory.

98 citations

Proceedings ArticleDOI
05 Nov 2007
TL;DR: This paper develops centralized algorithms in a slotted time model to read all the tags using near-optimal number of time slots for slotted scheduled access of RFID tags in a multiple reader environment and significantly outperform colorwave, an existing algorithm for similar problems.
Abstract: Radio frequency identification (RFID) is a technology where a reader device can "sense" the presence of a close-by object by reading a tag device attached to the object. To improve coverage, multiple RFID readers can be deployed in the given region. In this paper, we consider the problem of slotted scheduled access of RFID tags in a multiple reader environment. In particular, we develop centralized algorithms in a slotted time model to read all the tags using near-optimal number of time slots. We consider two scenarios -one wherein the tag distribution in the physical space is unknown, and the other where tag distribution is known or can be estimated a priori. For each of these scenarios, we consider two cases depending on whether a single channel or multiple channels are available. All the above version of the problem are NP-hard. We design approximation algorithms for the single channel and heuristic algorithms for the multiple channel cases. Through extensive simulations, we show that for the single channel case, our heuristics perform close to the approximation algorithms. In general, our simulations show that our algorithms significantly outperform colorwave, an existing algorithm for similar problems.

98 citations

Proceedings Article
01 Jan 2017
TL;DR: A fresh look at Web page load performance from the point of view of user experience, finding that user attention and interest can be captured using a user’s eye gaze and can inturn be used to improve uPLT.
Abstract: We take a fresh look at Web page load performance from the point of view of user experience. Our user study shows that perceptual performance, defined as user-perceived page load time (uPLT) poorly correlates with traditional page load time (PLT) metrics. However, most page load optimizations are designed to improve the traditional PLT metrics, rendering their impact on user experience uncertain. Instead, we present WebGaze, a system that specifically optimizes for the uPLT metric. The key insight in WebGaze is that user attention and interest can be captured using a user’s eye gaze and can inturn be used to improve uPLT. We collect eye gaze data from 50 users across 45 Web pages and find that there is commonality in user attention across users. Specifically, users are drawn to certain regions on the page, that we call regions of high collective fixation. WebGaze prioritizes loading objects that exhibit a high degree of collective fixation to improve user-perceived latencies. We compare WebGaze with three alternate strategies, one of which is the state-of-the-art system that also uses prioritization to improve user experience. Our evaluation based on a user study shows that WebGaze improves median uPLT for 73% of the Web pages compared to all three alternate strategies.

80 citations

Proceedings ArticleDOI
11 Dec 2006
TL;DR: This work presents a topology control approach to effectively using directional antennas with legacy MAC layer protocols such as IEEE 802.11.11 based on a well-known approximation algorithm to compute minimum degree spanning trees and shows that this approach can reduce interference significantly without increasing stretch factors to any appreciable extent.
Abstract: Directional antennas in wireless mesh networks can improve spatial reuse. However, using them effectively needs specialized protocol support at the MAC layer, which is always not practical. In this work, we present a topology control approach to effectively using directional antennas with legacy MAC layer protocols such as IEEE 802.11. The idea is to use multiple directional antennas on each node and orient them appropriately to create low interference topologies while maintatining network connectivity. Our approach is based on a well-known approximation algorithm to compute minimum degree spanning trees. We show via empirical studies that this approach can reduce interference significantly without increasing stretch factors to any appreciable extent. Detailed wireless network simulations also show that this approach improves end-to-end throughput of multihop flows relative to using omni-directional antennas. Three or four directional antennas per network node with only moderate beamwidths are sufficient to improve the saturation throughput of multihop flows by a factor of 3?4.

76 citations

Journal ArticleDOI
01 Jul 2008
TL;DR: The anycast mechanism at the link layer for wireless ad hoc networks is developed and it is shown that anycast performs significantly better than 802.11 in terms of packet delivery, particularly when the path length or effect of fading is large.
Abstract: We develop an anycast mechanism at the link layer for wireless ad hoc networks. The goal is to exploit path diversity in the link layer by choosing the best next hop to forward packets when multiple next hop choices are available. Such choices can come from a multipath routing protocol, for example. This technique can reduce transmission retries and packet drop probabilities in the face of channel fading. We develop an anycast extension of the IEEE 802.11 MAC layer based on this idea. We implement the protocol in an experimental proof-of-concept testbed using the Berkeley motes platform and S-MAC protocol stack. We also implement it in the popular ns-2 simulator and experiment with the AOMDV multipath routing protocol and Ricean fading channels. We show that anycast performs significantly better than 802.11 in terms of packet delivery, particularly when the path length or effect of fading is large. Further we experiment with anycast in networks that use multiple channels and those that use directional antennas for transmission. In these networks, deafness and hidden terminal problems are the main source of packet loss. We implemented anycast as extension of 802.11 like protocols that were proposed for these special networks. We are able to show that anycast is capable of enhancing the performance of these protocols by simply making use of the path diversity whenever it is available.

76 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This work develops and analyzes low-energy adaptive clustering hierarchy (LEACH), a protocol architecture for microsensor networks that combines the ideas of energy-efficient cluster-based routing and media access together with application-specific data aggregation to achieve good performance in terms of system lifetime, latency, and application-perceived quality.
Abstract: Networking together hundreds or thousands of cheap microsensor nodes allows users to accurately monitor a remote environment by intelligently combining the data from the individual nodes. These networks require robust wireless communication protocols that are energy efficient and provide low latency. We develop and analyze low-energy adaptive clustering hierarchy (LEACH), a protocol architecture for microsensor networks that combines the ideas of energy-efficient cluster-based routing and media access together with application-specific data aggregation to achieve good performance in terms of system lifetime, latency, and application-perceived quality. LEACH includes a new, distributed cluster formation technique that enables self-organization of large numbers of nodes, algorithms for adapting clusters and rotating cluster head positions to evenly distribute the energy load among all the nodes, and techniques to enable distributed signal processing to save communication resources. Our results show that LEACH can improve system lifetime by an order of magnitude compared with general-purpose multihop approaches.

10,296 citations

Journal ArticleDOI

6,278 citations

Proceedings ArticleDOI
01 Aug 2000
TL;DR: This paper explores and evaluates the use of directed diffusion for a simple remote-surveillance sensor network and its implications for sensing, communication and computation.
Abstract: Advances in processor, memory and radio technology will enable small and cheap nodes capable of sensing, communication and computation. Networks of such nodes can coordinate to perform distributed sensing of environmental phenomena. In this paper, we explore the directed diffusion paradigm for such coordination. Directed diffusion is datacentric in that all communication is for named data. All nodes in a directed diffusion-based network are application-aware. This enables diffusion to achieve energy savings by selecting empirically good paths and by caching and processing data in-network. We explore and evaluate the use of directed diffusion for a simple remote-surveillance sensor network.

6,061 citations

Amin Vahdat1
01 Jan 2000
TL;DR: This work introduces Epidemic Routing, where random pair-wise exchanges of messages among mobile hosts ensure eventual message delivery and achieves eventual delivery of 100% of messages with reasonable aggregate resource consumption in a number of interesting scenarios.
Abstract: Mobile ad hoc routing protocols allow nodes with wireless adaptors to communicate with one another without any pre-existing network infrastructure. Existing ad hoc routing protocols, while robust to rapidly changing network topology, assume the presence of a connected path from source to destination. Given power limitations, the advent of short-range wireless networks, and the wide physical conditions over which ad hoc networks must be deployed, in some scenarios it is likely that this assumption is invalid. In this work, we develop techniques to deliver messages in the case where there is never a connected path from source to destination or when a network partition exists at the time a message is originated. To this end, we introduce Epidemic Routing, where random pair-wise exchanges of messages among mobile hosts ensure eventual message delivery. The goals of Epidemic Routing are to: i) maximize message delivery rate, ii) minimize message latency, and iii) minimize the total resources consumed in message delivery. Through an implementation in the Monarch simulator, we show that Epidemic Routing achieves eventual delivery of 100% of messages with reasonable aggregate resource consumption in a number of interesting scenarios.

4,355 citations

Journal ArticleDOI
TL;DR: This paper presents a detailed study on recent advances and open research issues in WMNs, followed by discussing the critical factors influencing protocol design and exploring the state-of-the-art protocols for WMNs.

4,205 citations