scispace - formally typeset
Search or ask a question
Author

Samit K. Ray

Bio: Samit K. Ray is an academic researcher from Indian Institute of Technology Kharagpur. The author has contributed to research in topics: Photoluminescence & Thin film. The author has an hindex of 44, co-authored 507 publications receiving 8085 citations. Previous affiliations of Samit K. Ray include University of Delaware & Indian Institute of Technology Kanpur.


Papers
More filters
Journal ArticleDOI
02 Nov 2018
TL;DR: In this paper, a detailed time-resolved investigation provides ultrafast radiative and non-radiative lifetimes of the excitons and biexcitons in layered transition metal dichalcogenides (TMDs) at room temperature.
Abstract: Strong light-matter interactions in layered transition metal dichalcogenides (TMDs) open up vivid possibilities for novel excitonic quasiparticle-based devices. The optical properties of TMDs are dominated mostly by the tightly bound excitons and more complex quasiparticles, the biexcitons. Instead of physically exfoliated monolayers, the solvent-mediated chemical exfoliation of these 2D crystals is a cost-effective, large-scale production method suitable for substantial practical implications. Here, we explore the ultrafast excitonic phenomena in layered WS2 (mono-to-quad) dispersion using broadband (350–750 nm) femtosecond pump-probe spectroscopy at room temperature (300 K) which are inaccessible to the steady-state absorption or emission spectroscopy. The transient absorption spectra (TAS) suggest that the mono-to-quad layered dispersion of WS2 has similar spectral features as monolayer WS2 in terms of saturation absorptions (SA) and excited state absorptions (ESA). Similar to monolayer TMDs, we are able to identify excitons and biexcitons in multi-layered 2D stratum of WS2 as well as calculate the biexciton binding energies ( 69 meV and 66 meV), which are in excellent agreement with earlier theoretical predictions. Furthermore, using many-body physics, we demonstrate that the excitons in layered WS2 behave like Wannier–Mott excitons and explain their origins via first-principles calculations. Our detailed time-resolved investigation provides ultrafast radiative and non-radiative lifetimes of the excitons and biexcitons in layered WS2. Indeed, our results unravel the complex optical response of layered TMDs, which should lead to numerous technological applications for developing excitonic quasiparticle-based valleytronic devices and ultrafast biexciton lasers at room temperature.

22 citations

Journal ArticleDOI
TL;DR: The formation of nanotubes mainly involved the initial nucleation followed by the growth of nanorods at 95 degrees C, and with the increase of dissolution time at room temperature, the preferential chemical dissolution of the metastable Zn-rich [0001] polar surfaces resulted in removing the atoms from the surfaces, thus leading to the thinning of the wall of the nanostructures.
Abstract: ZnO nanostructures were fabricated on copper substrates by hydrothermal method at an optimized growth temperature of -95 degrees C. Structural properties were investigated by field emission scanning electron and transmission electron microscopy. Distinct morphologies were found to be formed at different growth times. The formation of nanotubes mainly involved the initial nucleation followed by the growth of nanorods at 95 degrees C, and then with the increase of dissolution time at room temperature, the preferential chemical dissolution of the metastable Zn-rich [0001] polar surfaces resulted in removing the atoms from the surfaces, thus leading to the thinning of the wall of the nanostructures. Completely hollow ZnO nanotubes could be obtained at a high dissolution time. The room temperature photoluminescence and optical absorption properties of ZnO nanotubes have been studied as a function of dissolution time. The efficacy of ZnO nanotubes for glucose sensing applications has been studied.

22 citations

Journal ArticleDOI
TL;DR: In this article, a novel graphene-Ag0 hybrid plasmonic nanostructure-based photodetector exhibiting moderately high responsivity and spectral selectivity in the visible wavelength.
Abstract: We report the fabrication and characteristics of a novel graphene-Ag0 hybrid plasmonic nanostructure-based photodetector exhibiting moderately high responsivity (∼28 mA/W) and spectral selectivity (∼510 nm) in the visible wavelength. The formation of highly stable Ag0 nanoparticles with an average size of 40 nm is observed within the graphene layers, resulting in n-type doping of hybrid material. The absorption peak of graphene-Ag0 hybrid is redshifted to the visible wavelength (∼510 nm) from the plasmonic Ag peak (∼380 nm) in agreement with the optical simulation results for embedded metal nanoparticles. The study demonstrates the synergistic effect of the graphene-metal nanocomposite, which appears attractive for applications in graphene-based photonic devices.

22 citations

Journal ArticleDOI
TL;DR: The proposed method significantly lowers the laser intensity required for optical power-dependent doping, resulting in prevention of damage to the sample due to local heating, and could be very useful for tuning graphene plasmons on the widely used Si/SiO2 substrates for various photonic device applications.
Abstract: The novel opto-chemical doping effect in Ag nanoparticle-decorated monolayer graphene grown by chemical vapor deposition has been investigated using Raman spectroscopy for the first time. We used both noble metal nanoparticles and optical excitation, in a hybrid opto-chemical route, to tune the doping level in graphene. Metal nanoparticle-induced chemical effects and laser power-induced substrate effects alter the doping nature of graphene from p- to n-type. Compared with earlier studies, the proposed method significantly lowers the laser intensity required for optical power-dependent doping, resulting in prevention of damage to the sample due to local heating. Some other interesting observations are the enhanced peak intensity in the Raman spectrum of graphene, enhancement of the D-band intensity and the introduction of G-band splitting. This novel, cheap and easily implemented hybrid optical-chemical doping strategy could be very useful for tuning graphene plasmons on the widely used Si/SiO2 substrates for various photonic device applications.

22 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Nanocrystals (NCs) discussed in this Review are tiny crystals of metals, semiconductors, and magnetic material consisting of hundreds to a few thousand atoms each that are among the hottest research topics of the last decades.
Abstract: Nanocrystals (NCs) discussed in this Review are tiny crystals of metals, semiconductors, and magnetic material consisting of hundreds to a few thousand atoms each. Their size ranges from 2-3 to about 20 nm. What is special about this size regime that placed NCs among the hottest research topics of the last decades? The quantum mechanical coupling * To whom correspondence should be addressed. E-mail: dvtalapin@uchicago.edu. † The University of Chicago. ‡ Argonne National Lab. Chem. Rev. 2010, 110, 389–458 389

3,720 citations

01 Jan 2016
TL;DR: The principles of fluorescence spectroscopy is universally compatible with any devices to read and is available in the digital library an online access to it is set as public so you can download it instantly.
Abstract: Thank you very much for downloading principles of fluorescence spectroscopy. As you may know, people have look hundreds times for their favorite novels like this principles of fluorescence spectroscopy, but end up in malicious downloads. Rather than reading a good book with a cup of tea in the afternoon, instead they cope with some harmful bugs inside their desktop computer. principles of fluorescence spectroscopy is available in our digital library an online access to it is set as public so you can download it instantly. Our digital library spans in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Kindly say, the principles of fluorescence spectroscopy is universally compatible with any devices to read.

2,960 citations

Journal ArticleDOI
TL;DR: In this paper, the dominant electronic and chemical mechanisms that influence the performance of metal-oxide-based resistive-type gas sensors are discussed, including p-n and n-n potential barrier manipulation, n-p-n response type inversions, spillover effects, synergistic catalytic behavior, and microstructure enhancement.
Abstract: Metal oxide-based resistive-type gas sensors are solid-state devices which are widely used in a number of applications from health and safety to energy efficiency and emission control. Nanomaterials such as nanowires, nanorods, and nanoparticles have dominated the research focus in this field due to their large number of surface sites facilitating surface reactions. Previous studies have shown that incorporating two or more metal oxides to form a heterojunction interface can have drastic effects on gas sensor performance, especially the selectivity. Recently, these effects have been amplified by designing heterojunctions on the nano-scale. These designs have evolved from mixed commercial powders and bi-layer films to finely-tuned core–shell and hierarchical brush-like nanocomposites. This review details the various morphological classes currently available for nanostructured metal-oxide based heterojunctions and then presents the dominant electronic and chemical mechanisms that influence the performance of these materials as resistive-type gas sensors. Mechanisms explored include p–n and n–n potential barrier manipulation, n–p–n response type inversions, spill-over effects, synergistic catalytic behavior, and microstructure enhancement. Tables are presented summarizing these works specifically for SnO2, ZnO, TiO2, In2O3, Fe2O3, MoO3, Co3O4, and CdO-based nanocomposites. Recent developments are highlighted and likely future trends are explored.

1,392 citations

Journal ArticleDOI
01 Mar 1994-Nature
TL;DR: It is clear that the above can lead to confusion when scientists of different countries are trying to communicate with each other, so an internationally recognized system of naming organisms is created.
Abstract: It is clear that the above can lead to confusion when scientists of different countries are trying to communicate with each other. Another example is the burrowing rodent called a gopher found throughout the western United States. In the southeastern United States the term gopher refers to a burrowing turtle very similar to the desert tortoise found in the American southwest. One final example; two North American mammals known as the elk and the caribou are known in Europe as the reindeer and the elk. We never sing “Rudolph the Red-nosed elk”! Confused? This was the reason for creating an internationally recognized system of naming organisms. To avoid confusion, living organisms are assigned a scientific name based on Latin or Latinized words. The English sparrow is Passer domesticus or Passer domesticus (italics or underlining these two names is the official written representation of a scientific name). Using a uniform naming system allows scientists from all over the world to recognize exactly which life form a scientist is referring to. The naming process is called the binomial system of nomenclature. Passer is comparable to a surname and is called the genus, while domesticus is the specific or species name (like your given name) of the English sparrow. Now scientists can give all sparrow-like birds the genus Passer but the species name will vary. All similar genera (plural for genus) can be grouped into another, “higher” category (see below). Study the following for a more through understanding of taxonomy. Taxonomy Analogy Kingdom: Animalia Country

1,305 citations

Journal ArticleDOI
TL;DR: This critical review assesses the recent developments in the use of graphene-based materials as sorbent or photocatalytic materials for environmental decontamination, as building blocks for next generation water treatment and desalination membranes, and as electrode materials for contaminant monitoring or removal.
Abstract: Graphene-based materials are gaining heightened attention as novel materials for environmental applications The unique physicochemical properties of graphene, notably its exceptionally high surface area, electron mobility, thermal conductivity, and mechanical strength, can lead to novel or improved technologies to address the pressing global environmental challenges This critical review assesses the recent developments in the use of graphene-based materials as sorbent or photocatalytic materials for environmental decontamination, as building blocks for next generation water treatment and desalination membranes, and as electrode materials for contaminant monitoring or removal The most promising areas of research are highlighted, with a discussion of the main challenges that we need to overcome in order to fully realize the exceptional properties of graphene in environmental applications

1,158 citations