scispace - formally typeset
Search or ask a question
Author

Samson A. Jenekhe

Other affiliations: University of Rochester, Honeywell
Bio: Samson A. Jenekhe is an academic researcher from University of Washington. The author has contributed to research in topics: Polymer solar cell & Polymer. The author has an hindex of 97, co-authored 369 publications receiving 31137 citations. Previous affiliations of Samson A. Jenekhe include University of Rochester & Honeywell.


Papers
More filters
Journal ArticleDOI
TL;DR: A comprehensive review of the literature on electron transport materials (ETMs) used to enhance the performance of organic light-emitting diodes (OLEDs) is presented in this article.
Abstract: A comprehensive review of the literature on electron transport materials (ETMs) used to enhance the performance of organic light-emitting diodes (OLEDs) is presented. The structure−property−performance relationships of many classes of ETMs, both small-molecule- and polymer-based, that have been widely used to improve OLED performance through control of charge injection, transport, and recombination are highlighted. The molecular architecture, electronic structure (electron affinity and ionization potential), thin film processing, thermal stability, morphology, and electron mobility of diverse organic ETMs are discussed and related to their effectiveness in improving OLED performance (efficiency, brightness, and drive voltage). Some issues relating to the experimental procedures for the estimation of relevant material properties such as electron affinity and electron mobility are discussed. The design of multifunctional electroluminescent polymers whereby light emission and electron- and hole-transport pro...

1,527 citations

Journal ArticleDOI
05 Aug 1994-Science
TL;DR: It is shown that the luminescence of conjugated polymer thin films originates from excimer emission and that the generally low quantum yield is the result of self-quenching, so that in sufficiently dilute solution, the "single-chain" emission has a quantum yield of unity.
Abstract: Observations of intermolecular excimers in several pi-conjugated polymers and exciplexes of these polymers with tris(p-tolyl) amine are reported. It is shown that the luminescence of conjugated polymer thin films originates from excimer emission and that the generally low quantum yield is the result of self-quenching. Thus, in sufficiently dilute solution, the "single-chain" emission has a quantum yield of unity. Exciplex luminescence and exciplex-mediated charge photogeneration have much higher quantum yields than the excimer-mediated photophysical processes. These results provide a basis for understanding and controlling the photophysics of conjugated polymers in terms of supramolecular structure and morphology.

1,225 citations

Journal ArticleDOI
15 Jan 1999-Science
TL;DR: The results demonstrate the potential of hierarchical self-assembly of macromolecular components for engineering complex two- and three-dimensional periodic and functional mesostructures.
Abstract: Rod-coil diblock copolymers in a selective solvent for the coil-like polymer self-organize into hollow spherical micelles having diameters of a few micrometers. Long-range, close-packed self-ordering of the micelles produced highly iridescent periodic microporous materials. Solution-cast micellar films consisted of multilayers of hexagonally ordered arrays of spherical holes whose diameter, periodicity, and wall thickness depended on copolymer molecular weight and composition. Addition of fullerenes into the copolymer solutions also regulated the microstructure and optical properties of the microporous films. These results demonstrate the potential of hierarchical self-assembly of macromolecular components for engineering complex two- and three-dimensional periodic and functional mesostructures.

886 citations

Journal ArticleDOI
20 Mar 1998-Science
TL;DR: Amphiphilic poly(phenylquinoline)-block-polystyrene rod-coil diblock copolymers were observed to self-organize into robust, micrometer-scale, spherical, vesicular, cylindrical, and lamellar aggregates from solution, but their size scale decreased with a decreasing fraction of the rigid-rod block.
Abstract: Amphiphilic poly(phenylquinoline)-block-polystyrene rod-coil diblock copolymers were observed to self-organize into robust, micrometer-scale, spherical, vesicular, cylindrical, and lamellar aggregates from solution. These diverse aggregate morphologies were seen at each composition, but their size scale decreased with a decreasing fraction of the rigid-rod block. Compared to coil-coil block copolymer micelles, the present aggregates are larger by about two orders of magnitude and have aggregation numbers of over 10(8). The spherical and cylindrical aggregates have large hollow cavities. Only spherical aggregates with aggregation numbers in excess of 10(9) were formed in the presence of fullerenes (C60, C70) in solution, resulting in the solubilization and encapsulation of over 10(10) fullerene molecules per aggregate.

824 citations

Journal ArticleDOI
TL;DR: In this article, a donor-acceptor conjugated copolymer and a corresponding oligomer were synthesized and their solution and solid-state photophysics were investigated, and their optical band gaps were 2.35−2.64 eV.
Abstract: Alternating carbazole−quinoline and phenothiazine−quinoline donor−acceptor conjugated copolymers and a corresponding oligomer were synthesized, and their solution and solid-state photophysics were investigated. The new copolymers, poly(2,2‘-9-methyl-3,6-carbazolylene-6,6‘-bis(4-phenylquinoline)) and poly(2,2‘-10-methyl-3,7-phenothiazylene-6,6‘-bis(4-phenylquinoline)), had intrinsic viscosities of 11.2−22.0 dL/g, indicating very high molecular weights. The optical band gaps of the new copolymers were 2.35−2.64 eV, which are significantly smaller than the corresponding homopolymers. The absorption and emission spectra of the related donor−acceptor oligomers, 3,6-[bis(4-phenyl-2-quinolyl)]-9-methylcarbazole and 3,7-[bis(4-phenyl-2-quinolyl)]-10-methylphenothiazine, in solvents of varying polarity showed positive solvatochromism. An unusual dual fluorescence, with a blue emission band at 454 nm and an orange emission band at 584 nm, was observed in solid films of the carbazole-linked oligomer and related to i...

720 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
15 Dec 1995-Science
TL;DR: In this paper, the carrier collection efficiency and energy conversion efficiency of polymer photovoltaic cells were improved by blending of the semiconducting polymer with C60 or its functionalized derivatives.
Abstract: The carrier collection efficiency (ηc) and energy conversion efficiency (ηe) of polymer photovoltaic cells were improved by blending of the semiconducting polymer with C60 or its functionalized derivatives. Composite films of poly(2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene) (MEH-PPV) and fullerenes exhibit ηc of about 29 percent of electrons per photon and ηe of about 2.9 percent, efficiencies that are better by more than two orders of magnitude than those that have been achieved with devices made with pure MEH-PPV. The efficient charge separation results from photoinduced electron transfer from the MEH-PPV (as donor) to C60 (as acceptor); the high collection efficiency results from a bicontinuous network of internal donor-acceptor heterojunctions.

9,611 citations

Journal ArticleDOI
TL;DR: This review gives a general introduction to the materials, production techniques, working principles, critical parameters, and stability of the organic solar cells, and discusses the alternative approaches such as polymer/polymer solar cells and organic/inorganic hybrid solar cells.
Abstract: The need to develop inexpensive renewable energy sources stimulates scientific research for efficient, low-cost photovoltaic devices.1 The organic, polymer-based photovoltaic elements have introduced at least the potential of obtaining cheap and easy methods to produce energy from light.2 The possibility of chemically manipulating the material properties of polymers (plastics) combined with a variety of easy and cheap processing techniques has made polymer-based materials present in almost every aspect of modern society.3 Organic semiconductors have several advantages: (a) lowcost synthesis, and (b) easy manufacture of thin film devices by vacuum evaporation/sublimation or solution cast or printing technologies. Furthermore, organic semiconductor thin films may show high absorption coefficients4 exceeding 105 cm-1, which makes them good chromophores for optoelectronic applications. The electronic band gap of organic semiconductors can be engineered by chemical synthesis for simple color changing of light emitting diodes (LEDs).5 Charge carrier mobilities as high as 10 cm2/V‚s6 made them competitive with amorphous silicon.7 This review is organized as follows. In the first part, we will give a general introduction to the materials, production techniques, working principles, critical parameters, and stability of the organic solar cells. In the second part, we will focus on conjugated polymer/fullerene bulk heterojunction solar cells, mainly on polyphenylenevinylene (PPV) derivatives/(1-(3-methoxycarbonyl) propyl-1-phenyl[6,6]C61) (PCBM) fullerene derivatives and poly(3-hexylthiophene) (P3HT)/PCBM systems. In the third part, we will discuss the alternative approaches such as polymer/polymer solar cells and organic/inorganic hybrid solar cells. In the fourth part, we will suggest possible routes for further improvements and finish with some conclusions. The different papers mentioned in the text have been chosen for didactical purposes and cannot reflect the chronology of the research field nor have a claim of completeness. The further interested reader is referred to the vast amount of quality papers published in this field during the past decade.

6,059 citations

Journal ArticleDOI
TL;DR: Electrospinning is a highly versatile method to process solutions or melts, mainly of polymers, into continuous fibers with diameters ranging from a few micrometers to a few nanometers, applicable to virtually every soluble or fusible polymer.
Abstract: Electrospinning is a highly versatile method to process solutions or melts, mainly of polymers, into continuous fibers with diameters ranging from a few micrometers to a few nanometers. This technique is applicable to virtually every soluble or fusible polymer. The polymers can be chemically modified and can also be tailored with additives ranging from simple carbon-black particles to complex species such as enzymes, viruses, and bacteria. Electrospinning appears to be straightforward, but is a rather intricate process that depends on a multitude of molecular, process, and technical parameters. The method provides access to entirely new materials, which may have complex chemical structures. Electrospinning is not only a focus of intense academic investigation; the technique is already being applied in many technological areas.

3,833 citations

Journal ArticleDOI
TL;DR: In this article, a review summarizes recent progress in the development of polymer solar cells and provides a synopsis of major achievements in the field over the past few years, while potential future developments and the applications of this technology are also briefly discussed.
Abstract: This Review summarizes recent progress in the development of polymer solar cells. It covers the scientific origins and basic properties of polymer solar cell technology, material requirements and device operation mechanisms, while also providing a synopsis of major achievements in the field over the past few years. Potential future developments and the applications of this technology are also briefly discussed.

3,832 citations