scispace - formally typeset
Search or ask a question
Author

Samuel Graham

Bio: Samuel Graham is an academic researcher from Georgia Institute of Technology. The author has contributed to research in topics: Thermal conductivity & Thermal resistance. The author has an hindex of 48, co-authored 347 publications receiving 9774 citations. Previous affiliations of Samuel Graham include Merck & Co. & United States Military Academy.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a combination of electron spectroscopy, density functional theory computations, and device characterization is used to determine band alignment and electron injection barriers in transparent conductive ZnO films.
Abstract: The interfacial electronic structure between oxide thin films and organic semiconductors remains a key parameter for optimum functionality and performance of next-generation organic/hybrid electronics. By tailoring defect concentrations in transparent conductive ZnO films, we demonstrate the importance of controlling the electron transfer barrier at the interface with organic acceptor molecules such as C60. A combination of electron spectroscopy, density functional theory computations, and device characterization is used to determine band alignment and electron injection barriers. Extensive experimental and first principles calculations reveal the controllable formation of hybridized interface states and charge transfer between shallow donor defects in the oxide layer and the molecular adsorbate. Importantly, it is shown that removal of shallow donor intragap states causes a larger barrier for electron injection. Thus, hybrid interface states constitute an important gateway for nearly barrier-free charge carrier injection. These findings open new avenues to understand and tailor interfaces between organic semiconductors and transparent oxides, of critical importance for novel optoelectronic devices and applications in energy-conversion and sensor technologies.

49 citations

Journal ArticleDOI
TL;DR: In this article, a comparative study between two such enhancement materials, namely aluminum and graphite foams, saturated with phase change material was carried out to evaluate the thermal charging performance of the two materials.

48 citations

Journal ArticleDOI
TL;DR: In this article, the power density capability of AlGaN/GaN high-electron mobility transistors made on Si, SiC, and diamond substrates were compared with devices on Si and SiC with integrated microchannel cooling.
Abstract: In this paper, the power density capability of AlGaN/GaN high-electron mobility transistors (HEMTs) made on Si, SiC, and diamond substrates were compared with devices on Si and SiC with integrated microchannel cooling. A device temperature limit of 200 °C was used to define the power density. The numerical model accounts for heat transfer from channel of the AlGaN/GaN HEMTs to the heat sink, fluid flow rates, pressure drop, and pumping power required for liquid cooling. The diamond substrate was shown to be superior in reducing the junction temperatures in conventional passive cooling methods employing high thermal conductivity substrates. However, single-phase liquid cooling with microchannels integrated into a SiC substrate showed that it is possible to operate the devices at power densities higher than that on 200- $\mu $ m-thick diamond substrates, considering a maximum operational temperature of 200 °C. Microchannels integrated into the Si substrate also showed a slight increase in the power density compared with passively cooled devices on SiC. Overall, this methodology shows a promising alternative to expensive high thermal conductivity substrates for cooling AlGaN/GaN HEMTs.

47 citations

Journal ArticleDOI
TL;DR: In this article, the authors used finite element analysis to estimate the transverse thermal conductivity of continuous fiber reinforced composites containing a random fiber distribution with imperfect interfaces, and compared with the classical solution of Hasselman and Johnson to determine limits of applicability.
Abstract: Estimation of the transverse thermal conductivity of continuous fiber reinforced composites containing a random fiber distribution with imperfect interfaces was performed using finite element analysis. FEA results were compared with the classical solution of Hasselman and Johnson to determine limits of applicability. The Hasselman and Johnson model predicts the effective thermal conductivity within 3 percent of the numerical estimates for interfacial conductance values of 1 × 10 -2 - 1 × 10 3 W/m 2 K, fiber-matrix conductivity ratios between 1 and 100, and fiber volume fractions up to 50 percent which are properties typical of ceramic composites

46 citations

Journal ArticleDOI
TL;DR: The results compare the utility of Raman based conductivity measurements relative to more established techniques while at the same time identifying situations where its use is most efficacious.
Abstract: Error and uncertainty in Raman thermal conductivity measurements are investigated via finite element based numerical simulation of two geometries often employed—Joule-heating of a wire and laser-heating of a suspended wafer. Using this methodology, the accuracy and precision of the Raman-derived thermal conductivity are shown to depend on (1) assumptions within the analytical model used in the deduction of thermal conductivity, (2) uncertainty in the quantification of heat flux and temperature, and (3) the evolution of thermomechanical stress during testing. Apart from the influence of stress, errors of 5% coupled with uncertainties of ±15% are achievable for most materials under conditions typical of Raman thermometry experiments. Error can increase to >20%, however, for materials having highly temperature dependent thermal conductivities or, in some materials, when thermomechanical stress develops concurrent with the heating. A dimensionless parameter—termed the Raman stress factor—is derived to identify when stress effects will induce large levels of error. Taken together, the results compare the utility of Raman based conductivity measurements relative to more established techniques while at the same time identifying situations where its use is most efficacious.

46 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
01 Aug 2014-Science
TL;DR: Perovskite films received a boost in photovoltaic efficiency through controlled formation of charge-generating films and improved current transfer to the electrodes and low-temperature processing steps allowed the use of materials that draw current out of the perovskites layer more efficiently.
Abstract: Advancing perovskite solar cell technologies toward their theoretical power conversion efficiency (PCE) requires delicate control over the carrier dynamics throughout the entire device. By controlling the formation of the perovskite layer and careful choices of other materials, we suppressed carrier recombination in the absorber, facilitated carrier injection into the carrier transport layers, and maintained good carrier extraction at the electrodes. When measured via reverse bias scan, cell PCE is typically boosted to 16.6% on average, with the highest efficiency of ~19.3% in a planar geometry without antireflective coating. The fabrication of our perovskite solar cells was conducted in air and from solution at low temperatures, which should simplify manufacturing of large-area perovskite devices that are inexpensive and perform at high levels.

5,789 citations

Journal ArticleDOI
TL;DR: A novel non-fullerene electron acceptor (ITIC) that overcomes some of the shortcomings of fullerene acceptors, for example, weak absorption in the visible spectral region and limited energy-level variability, is designed and synthesized.
Abstract: A novel non-fullerene electron acceptor (ITIC) that overcomes some of the shortcomings of fullerene acceptors, for example, weak absorption in the visible spectral region and limited energy-level variability, is designed and synthesized. Fullerene-free polymer solar cells (PSCs) based on the ITIC acceptor are demonstrated to exhibit power conversion effi ciencies of up to 6.8%, a record for fullerene-free PSCs.

3,048 citations