scispace - formally typeset
Search or ask a question
Author

Samuel Graham

Bio: Samuel Graham is an academic researcher from Georgia Institute of Technology. The author has contributed to research in topics: Thermal conductivity & Thermal resistance. The author has an hindex of 48, co-authored 347 publications receiving 9774 citations. Previous affiliations of Samuel Graham include Merck & Co. & United States Military Academy.


Papers
More filters
Proceedings ArticleDOI
13 Jun 2003
TL;DR: In this article, a commercial source was used to produce atomic hydrogen by thermal dissociation of molecular hydrogen using a hot filament and samples were exposed to an atomic hydrogen source at a distance of 200 - 500 mm downstream and angles between 0-90° with respect to the source.
Abstract: Recent studies have been conducted to investigate the use of atomic hydrogen as an in-situ contamination removal method for EUV optics. In these experiments, a commercial source was used to produce atomic hydrogen by thermal dissociation of molecular hydrogen using a hot filament. Samples for these experiments consisted of silicon wafers coated with sputtered carbon, Mo/Si optics with EUV-induced carbon, and bare Si-capped and Ru-B4C-capped Mo/Si optics. Samples were exposed to an atomic hydrogen source at a distance of 200 - 500 mm downstream and angles between 0-90° with respect to the source. Carbon removal rates and optic oxidation rates were measured using Auger electron spectroscopy depth profiling. In addition, at-wavelength peak reflectance (13.4 nm) was measured using the EUV reflectometer at the Advanced Light Source. Data from these experiments show carbon removal rates up to 20 A/hr for sputtered carbon and 40 A/hr for EUV deposited carbon at a distance of 200 mm downstream. The cleaning rate was also observed to be a strong function of distance and angular position. Experiments have also shown that the carbon etch rate can be increased by a factor of 4 by channeling atomic hydrogen through quartz tubes in order to direct the atomic hydrogen to the optic surface. Atomic hydrogen exposures of bare optic samples show a small risk in reflectivity degradation after extended periods. Extended exposures (up to 20 hours) of bare Si-capped Mo/Si optics show a 1.2% loss (absolute) in reflectivity while the Ru-B4C-capped Mo/Si optics show a loss on the order of 0.5%. In order to investigate the source of this reflectivity degradation, optic samples were exposed to atomic deuterium and analyzed using low energy ion scattering direct recoil spectroscopy to determine any reactions of the hydrogen with the multilayer stack. Overall, the results show that the risk of over-etching with atomic hydrogen is much less than previous studies using RF discharge cleaning while providing cleaning rates suitable for EUV lithography operations.

34 citations

Journal ArticleDOI
TL;DR: In this article, the authors compare results from finite element modeling to measurements by infrared imaging and micro-Raman imaging and provide insight into the relationship between temperature and structural change in the device.
Abstract: GaN HEMT reliability evaluation in a typical Arrhenius manner requires establishing peak junction temperature for a particular stress condition. Several new techniques have yielded promising results toward establishing peak temperature for these devices in combination with detailed physical modeling, particularly micro-Raman imaging. This paper compares results from finite element modeling to measurements by infrared imaging and micro-Raman imaging. The limitations of IR imaging were confirmed similar to earlier reports. Two techniques for establishing temperature from micro-Raman measurements were used to reveal excellent correlation to the model, and also provide insight into the relationship between temperature and structural change in the device. Temperature modeling data is reported for base plate temperature from 85°C to 250°C for practical GaN HEMT devices. Implications of the measurements for GaN HEMT reliability stress testing and analysis will be discussed. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

33 citations

Posted Content
TL;DR: This work grows chemical vapor-deposited diamond on silicon substrates by graphoepitaxy and experimentally demonstrate tunable thermal transport across diamond membranes and diamond-silicon interfaces and observed the highest diamond- silicon thermal boundary conductance (TBC) measured to date.
Abstract: The development of electronic devices, especially those that involve heterogeneous integration of materials, has led to increased challenges in addressing their thermal operational-temperature demands. The heat flow in these systems is significantly influenced or even dominated by thermal boundary resistance at interface between dissimilar materials. However, controlling and tuning heat transport across an interface and in the adjacent materials has so far drawn limited attention. In this work, we grow chemical-vapor-deposited (CVD) diamond on silicon substrates by graphoepitaxy and experimentally demonstrate tunable thermal transport across diamond membranes and diamond-silicon interfaces. We observed the highest diamond-silicon thermal boundary conductance (TBC) measured to date and increased diamond thermal conductivity due to strong grain texturing in the diamond near the interface. Additionally, non-equilibrium molecular-dynamics (NEMD) simulations and a Landauer approach are used to understand the diamond-silicon TBC. These findings pave the way for tuning or increasing thermal conductance in heterogeneously integrated electronics that involve polycrystalline materials and will impact applications including electronics thermal management and diamond growth.

33 citations

Patent
18 Sep 2001
TL;DR: In this article, a device for removing carbon contamination from a surface of the substrate includes a housing defining a vacuum chamber in which the substrate is located, and a source of electrons that are emitted to activate the gaseous species.
Abstract: Activated gaseous species generated adjacent a carbon contaminated surface affords in-situ cleaning. A device for removing carbon contamination from a surface of the substrate includes (a) a housing defining a vacuum chamber in which the substrate is located; (b) a source of gaseous species; and (c) a source of electrons that are emitted to activate the gaseous species into activated gaseous species. The source of electrons preferably includes (i) a filament made of a material that generates thermionic electron emissions; (ii) a source of energy that is connected to the filament; and (iii) an electrode to which the emitted electrons are attracted. The device is particularly suited for photolithography systems with optic surfaces, e.g., mirrors, that are otherwise inaccessible unless the system is dismantled.

33 citations

Journal ArticleDOI
TL;DR: In this article, a low pressure hot embossing method for transferring patterns of vertically aligned carbon nanotubes into thermoplastic substrates is presented, which can be used to integrate aligned nanomaterials with MEMS and flexible electronics.
Abstract: This paper presents a low pressure hot embossing method for transferring patterns of vertically aligned carbon nanotubes into thermoplastic substrates. The procedure utilizes the synthesis of carbon nanotubes in discrete patterns on silicon substrates through the vapor liquid solid growth mechanism. The nanotube pattern and silicon stamp is placed on top of a polycarbonate film and locally heated above the glass transition temperature using microwave processing. The weight of the silicon substrate presses the nanotubes into the polycarbonate, resulting in the complete transfer of vertically aligned patterns. The technique is a rapid processing method, which could be used to integrate aligned nanomaterials with MEMS and flexible electronics that are fabricated on a wide range of thermoplastic polymer materials.

32 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
01 Aug 2014-Science
TL;DR: Perovskite films received a boost in photovoltaic efficiency through controlled formation of charge-generating films and improved current transfer to the electrodes and low-temperature processing steps allowed the use of materials that draw current out of the perovskites layer more efficiently.
Abstract: Advancing perovskite solar cell technologies toward their theoretical power conversion efficiency (PCE) requires delicate control over the carrier dynamics throughout the entire device. By controlling the formation of the perovskite layer and careful choices of other materials, we suppressed carrier recombination in the absorber, facilitated carrier injection into the carrier transport layers, and maintained good carrier extraction at the electrodes. When measured via reverse bias scan, cell PCE is typically boosted to 16.6% on average, with the highest efficiency of ~19.3% in a planar geometry without antireflective coating. The fabrication of our perovskite solar cells was conducted in air and from solution at low temperatures, which should simplify manufacturing of large-area perovskite devices that are inexpensive and perform at high levels.

5,789 citations

Journal ArticleDOI
TL;DR: A novel non-fullerene electron acceptor (ITIC) that overcomes some of the shortcomings of fullerene acceptors, for example, weak absorption in the visible spectral region and limited energy-level variability, is designed and synthesized.
Abstract: A novel non-fullerene electron acceptor (ITIC) that overcomes some of the shortcomings of fullerene acceptors, for example, weak absorption in the visible spectral region and limited energy-level variability, is designed and synthesized. Fullerene-free polymer solar cells (PSCs) based on the ITIC acceptor are demonstrated to exhibit power conversion effi ciencies of up to 6.8%, a record for fullerene-free PSCs.

3,048 citations