scispace - formally typeset
Search or ask a question
Author

Samuel Graham

Bio: Samuel Graham is an academic researcher from Georgia Institute of Technology. The author has contributed to research in topics: Thermal conductivity & Thermal resistance. The author has an hindex of 48, co-authored 347 publications receiving 9774 citations. Previous affiliations of Samuel Graham include Merck & Co. & United States Military Academy.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the effect of the ALD process on the organic materials forming the device, the precursor diffusion and intermixing at the interface during the growth of different plasma-assisted ALD inorganic barriers (i.e. Al2O3 and TiO2) was investigated.
Abstract: Plasma-assisted atomic layer deposition (ALD) is used for the deposition of environmental barriers directly onto organic photovoltaic devices (OPVs) at near room temperature (30 °C). To study the effect of the ALD process on the organic materials forming the device, the precursor diffusion and intermixing at the interface during the growth of different plasma-assisted ALD inorganic barriers (i.e. Al2O3 and TiO2) onto the organic photoactive layer (P3HT:ICBA) was investigated. Depth profile x-ray photoelectron spectroscopy was used to analyze the composition of the organic/inorganic interface to investigate the infiltration of the plasma-assisted ALD precursors into the photoactive layer as a function of the precursor dimension, the process temperature, and organic layer morphology. The free volume in the photoactive layer accessible to the ALD precursor was characterized by means of ellipsometric porosimetry (EP) and spectroscopic ellipsometry as a function of temperature. The organic layer is shown to exhibit free volume broadening at high temperatures, increasing the infiltration depth of the ALD precursor into the photoactive layer. Furthermore, based on previous investigations, the intrinsic permeation properties of the inorganic layers deposited by plasma-assisted ALD were predicted from the nano-porosity content as measured by EP and found to be in the 10−6 gm−2 d−1 range. Insight from our studies was used to design and fabricate multilayer barriers synthesized at near-room temperature by plasma-assisted ALD in combination with plasma-enhanced CVD onto organic photovoltaic (OPVs) devices. Encapsulated OPVs displayed shelf-lifetimes up to 1400 h at ambient conditions.

13 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of solution-deposition and spray-coating on the formation of close-packed, high-quality monolayers are investigated for self-assembled polyamide self-assembles (SAMs) fabricated by solution deposition, micro-contact printing and spray coating.

13 citations

Journal ArticleDOI
TL;DR: In this paper, a line scan of a cross-section along the diamond growth direction was used to estimate the volume fraction of disordered carbon in the polycrystalline layer.
Abstract: Ultraviolet (UV) micro-Raman measurements are reported of diamond grown on GaN using chemical vapor deposition. UV excitation permits simultaneous investigation of the diamond (D) and disordered carbon (DC) comprising the polycrystalline layer. From line scans of a cross-section along the diamond growth direction, the DC component of the diamond layer is found to be highest near the GaN-on-diamond interface and diminish with characteristic length scale of ∼3.5 μm. Transmission electron microscopy (TEM) of the diamond near the interface confirms the presence of DC. Combined micro-Raman and TEM are used to develop an optical method for estimating the DC volume fraction.

12 citations

Journal ArticleDOI
TL;DR: In this paper, a dual-modulation-frequency time-domain thermodynamic mapping technique (1.61 and 9.3 MHz) was used to visualize the thermal conduction across buried semiconductor interfaces for β-Ga2O3-SiC samples.
Abstract: Thermal resistances from interfaces impede heat dissipation in micro/nanoscale electronics, especially for high-power electronics. Despite the growing importance of understanding interfacial thermal transport, advanced thermal characterization techniques that can visualize thermal conductance across buried interfaces, especially for nonmetal-nonmetal interfaces, are still under development. This work reports a dual-modulation-frequency time-domain thermoreflectance (TDTR) mapping technique (1.61 and 9.3 MHz) to visualize the thermal conduction across buried semiconductor interfaces for β-Ga2O3-SiC samples. Both the β-Ga2O3 thermal conductivity and the buried β-Ga2O3-SiC thermal boundary conductance (TBC) are visualized for an area of 200 × 200 μm simultaneously. Areas with low TBC values (≤20 MW/m2·K) are identified on the TBC map, which correspond to weakly bonded interfaces caused by high-temperature annealing. Additionally, the steady-state temperature rise induced by the TDTR laser, usually ignored in TDTR analysis, is found to be able to probe TBC variations of the buried interfaces without the typical limit of thermal penetration depth. This technique can be applied to detect defects/voids in deeply buried heterogeneous interfaces nondestructively and also opens a door for the visualization of thermal conductance in nanoscale nonhomogeneous structures.

12 citations

Journal ArticleDOI
TL;DR: In this paper, the performance of these PE-ALD TiO2 films is highly dependent on the thickness of the layers, and the results suggest a significant reactivity of the ALD precursors with the ITO substrate to form conformal films with properties which can normally only be achieved with much thicker films created from chemical vapor deposition or solgel solution processing.
Abstract: Ultra-thin (0.5–10 nm) plasma-enhanced atomic layer deposited (PE-ALD) titanium oxide (TiOx) films, deposited on indium-tin-oxide (ITO) contacts, are investigated as hole-blocking interlayers using conventional electrochemistry of select probe molecules, in blended heterojunction (P3HT:PCBM) organic photovoltaics (OPVs) and in conventional Al/TiOx/p-Si diode platforms. Even films as thin as 0.5 nm, which represent as few as 10 ALD cycles, begin to show hole blocking in the electrochemical experiments, and optimized rectification and power conversion efficiencies are seen for the diode and OPV platforms respectively at a thickness of ca. 3 nm. These results suggest a significant reactivity of the ALD precursors with the ITO substrate to form conformal films with properties which can normally only be achieved with much thicker TiO2 films created from chemical vapor deposition or sol–gel solution processing. The performance of these PE-ALD TiOx layers is highly dependent on thickness. Up to ca. 3 nm these PE-ALD films remain amorphous, whereas for thicker layers (10 nm) grazing incidence X-ray diffraction shows a transition to the anatase structure, with an increase in both leakage current and reduction in shunt resistance in PV platforms. TiO2 films can be quite attractive electron-selective, hole-blocking interlayers in both PV and photoelectrochemical energy conversion platforms, but need to be thin, owing to their lower intrinsic conductivities. PE-ALD TiO2 films appear to provide these capabilities, with strikingly optimized performance at very low thickness.

12 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
01 Aug 2014-Science
TL;DR: Perovskite films received a boost in photovoltaic efficiency through controlled formation of charge-generating films and improved current transfer to the electrodes and low-temperature processing steps allowed the use of materials that draw current out of the perovskites layer more efficiently.
Abstract: Advancing perovskite solar cell technologies toward their theoretical power conversion efficiency (PCE) requires delicate control over the carrier dynamics throughout the entire device. By controlling the formation of the perovskite layer and careful choices of other materials, we suppressed carrier recombination in the absorber, facilitated carrier injection into the carrier transport layers, and maintained good carrier extraction at the electrodes. When measured via reverse bias scan, cell PCE is typically boosted to 16.6% on average, with the highest efficiency of ~19.3% in a planar geometry without antireflective coating. The fabrication of our perovskite solar cells was conducted in air and from solution at low temperatures, which should simplify manufacturing of large-area perovskite devices that are inexpensive and perform at high levels.

5,789 citations

Journal ArticleDOI
TL;DR: A novel non-fullerene electron acceptor (ITIC) that overcomes some of the shortcomings of fullerene acceptors, for example, weak absorption in the visible spectral region and limited energy-level variability, is designed and synthesized.
Abstract: A novel non-fullerene electron acceptor (ITIC) that overcomes some of the shortcomings of fullerene acceptors, for example, weak absorption in the visible spectral region and limited energy-level variability, is designed and synthesized. Fullerene-free polymer solar cells (PSCs) based on the ITIC acceptor are demonstrated to exhibit power conversion effi ciencies of up to 6.8%, a record for fullerene-free PSCs.

3,048 citations