scispace - formally typeset
Search or ask a question
Author

Samuel Graham

Bio: Samuel Graham is an academic researcher from Georgia Institute of Technology. The author has contributed to research in topics: Thermal conductivity & Thermal resistance. The author has an hindex of 48, co-authored 347 publications receiving 9774 citations. Previous affiliations of Samuel Graham include Merck & Co. & United States Military Academy.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the effect of thermal shock and oxidation-induced damage on the thermal diffusivity of unidirectional Nicalon-LAS glass-ceramic composites is presented.
Abstract: The effect of thermal shock and oxidation-induced damage on the thermal diffusivity of unidirectional Nicalon-LAS glass–ceramic composites is presented in this study. The data presented show that thermal diffusivity measurements provide a sensitive nondestructive method whereby damage progression may be assessed. Samples were exposed to isothermal oxidation and thermal shock environments. In addition, combined cycles of oxidation and thermal shock were also evaluated. The thermal diffusivity transverse to the fibers was measured to detect changes in material integrity. Significant decreases up to 23% were observed in the thermal diffusivity of the material.

5 citations

Posted ContentDOI
29 Sep 2021-ChemRxiv
TL;DR: In this article, the authors show that ionic transport can be varied independent of thermal transport in Ag+ superionic conductors, even though both phenomena arise from atomic vibrations, and provide a rational for how these two transport properties can be independent.
Abstract: Ultra-low lattice thermal conductivity as often found in superionic compounds is greatly beneficial for thermoelectric performance, however, a high ionic conductivity can lead to device degradation. Conversely, high ionic conductivities are searched for materials in solid-state battery applications. It is commonly thought that ionic transport induces low thermal conductivity and that ion and thermal transport are not completely independent properties of a material. However, no direct comparison or underlying physical relationship has been shown between the two. Here we establish that ionic transport can be varied independent of thermal transport in Ag+ superionic conductors, even though both phenomena arise from atomic vibrations. Thermal conductivity measurements, in conjunction with two-channel lattice dynamics modeling, reveals that the vast majority of Ag+ vibrations have non-propagating diffuson-like character, which provides a rational for how these two transport properties can be independent. Our results provide conceptually novel lattice dynamical insights to ionic transport and confirm that ion transport is not a requirement for ultra-low thermal conductivity. Consequently, this work bridges the fields of solid state ionics and thermal transport, thus providing design strategies for functional ionic conducting materials from a vibrational perspective.

4 citations

Journal ArticleDOI
TL;DR: In this article , a method to obtain insight into lower thermal conductivity of β-Ga2O3 thin films grown by molecular beam epitaxy (MBE) on c-plane sapphire and 4H-SiC substrates was reported.
Abstract: We report a method to obtain insight into lower thermal conductivity of β-Ga2O3 thin films grown by molecular beam epitaxy (MBE) on c-plane sapphire and 4H-SiC substrates. We compare experimental values against the numerical predictions to decipher the effect of boundary scattering and defects in thin-films. We used time domain thermoreflectance to perform the experiments, density functional theory and the Boltzmann transport equation for thermal conductivity calculations, and the diffuse mismatch model for thermal boundary conductance predictions. The experimental thermal conductivities were approximately three times smaller than those calculated for perfect Ga2O3 crystals of similar size. When considering the presence of grain boundaries, gallium and oxygen vacancies, and stacking faults in the calculations, the crystals that present around 1% of gallium vacancies and a density of stacking faults of 106 faults/cm were the ones whose thermal conductivities were closer to the experimental results. Our analysis suggests the level of different types of defects present in the Ga2O3 crystal that could be used to improve the quality of MBE-grown samples by reducing these defects and, thereby, produce materials with higher thermal conductivities.

4 citations

Proceedings ArticleDOI
01 May 2016
TL;DR: In this paper, two methods for measuring thermal performance of DAHI (Diverse Accessible Heterogeneous Integration) GaN HEMTs are presented and contrasted: IR microscopy and micro Raman spectroscopy.
Abstract: Thermal management and planning is important for heterogeneous integration due to the introduction of a complex thermal path. Thermal measurement of operating devices provides necessary data points for future design as well as validation of models. In this paper, two methods for measuring thermal performance of DAHI (Diverse Accessible Heterogeneous Integration) GaN HEMTs are presented and contrasted: IR microscopy and micro Raman spectroscopy. The QFI IR system uses a per-pixel material emissivity flat temperature calibration when the device is in an off-state, and then calculates operating temperatures by CCD exposure. Two separate QFI systems with differing CCD resolutions were used to collect thermal data and are compared. Raman Thermometry by contrast, is a laser point measurement of the frequency shift in scattered photons due to phonon vibrational modes whose frequencies are temperature dependent. Differences in measurements between the two methods arising from the stack of materials used in the DAHI process and their transparency are discussed. A method for measuring the surface temperature of the devices through Raman by the use of TiO2 nanoparticles is also presented in conjunction with a profile of the HEMT. Measurements are presented alongside thermal simulation results using prototype software Mentor GraphicsTM Calibre®.

4 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
01 Aug 2014-Science
TL;DR: Perovskite films received a boost in photovoltaic efficiency through controlled formation of charge-generating films and improved current transfer to the electrodes and low-temperature processing steps allowed the use of materials that draw current out of the perovskites layer more efficiently.
Abstract: Advancing perovskite solar cell technologies toward their theoretical power conversion efficiency (PCE) requires delicate control over the carrier dynamics throughout the entire device. By controlling the formation of the perovskite layer and careful choices of other materials, we suppressed carrier recombination in the absorber, facilitated carrier injection into the carrier transport layers, and maintained good carrier extraction at the electrodes. When measured via reverse bias scan, cell PCE is typically boosted to 16.6% on average, with the highest efficiency of ~19.3% in a planar geometry without antireflective coating. The fabrication of our perovskite solar cells was conducted in air and from solution at low temperatures, which should simplify manufacturing of large-area perovskite devices that are inexpensive and perform at high levels.

5,789 citations

Journal ArticleDOI
TL;DR: A novel non-fullerene electron acceptor (ITIC) that overcomes some of the shortcomings of fullerene acceptors, for example, weak absorption in the visible spectral region and limited energy-level variability, is designed and synthesized.
Abstract: A novel non-fullerene electron acceptor (ITIC) that overcomes some of the shortcomings of fullerene acceptors, for example, weak absorption in the visible spectral region and limited energy-level variability, is designed and synthesized. Fullerene-free polymer solar cells (PSCs) based on the ITIC acceptor are demonstrated to exhibit power conversion effi ciencies of up to 6.8%, a record for fullerene-free PSCs.

3,048 citations