scispace - formally typeset
Search or ask a question
Author

Samuel J. Danishefsky

Bio: Samuel J. Danishefsky is an academic researcher from Columbia University. The author has contributed to research in topics: Total synthesis & Lewis acids and bases. The author has an hindex of 79, co-authored 615 publications receiving 23458 citations. Previous affiliations of Samuel J. Danishefsky include University of California, Los Angeles & Albert Einstein College of Medicine.


Papers
More filters
Journal ArticleDOI
TL;DR: The hope is that patients immunized in an adjuvant manner with synthetic carbohydrate vaccines would produce antibodies reactive with cancer cells and that the production of such antibodies would mitigate against tumor spread, thereby enabling a more favorable survival and "quality of life" prognosis.
Abstract: This review provides an account of our explorations into oligosaccharide and glycoconjugate construction for the creation and evaluation of vaccines based on carbohydrate-centered tumor antigens. Our starting point was the known tendency of transformed cells to express selective carbohydrate motifs in the form of glycoproteins or glycolipids. Anticancer vaccines derived from carbohydrate-based antigens could be effective targets for immune recognition and attack. Obtaining significant quantities of such structures from natural sources is, however, extremely difficult. With the total synthesis of tumor-associated carbohydrate antigens accomplished, we began to evaluate at the clinical level whether the human immune system can respond to such fully synthetic antigens in a focused and useful way. Toward this goal, we have merged the resources of chemistry and immunology in an attack on the problem. The synthesis and immunoconjugation of various tumor-associated carbohydrate antigens and the results of such constructs in mice vaccinations will be described. For fashioning an effective vaccine, conjugation to a suitable immunogenic carrier was necessary and conjugates of KLH (keyhole limpet cyanin) have consistently demonstrated the relevant immunogenicity. Preclinical and clinical studies with synthetic conjugate carbohydrate vaccines show induction of IgM- and IgG-antibody responses. Another approach to anticancer vaccines involves the use of clustered glycopeptides as targets for immune attack. Initial attention has been directed to mucin related O-linked glycopeptides. Synthetic trimeric clusters of glycoepitopes derived from the Tn-, TF- and Lewis(y)-antigens, appropriately bioconjugated, have been demonstrated to be immunogenic. The hope is that patients immunized in an adjuvant manner with synthetic carbohydrate vaccines would produce antibodies reactive with cancer cells and that the production of such antibodies would mitigate against tumor spread, thereby enabling a more favorable survival and "quality of life" prognosis.

466 citations

Journal ArticleDOI
TL;DR: It is found that mammalian Hsp90, in cooperation with Hsp70, p60, and other factors, mediates the ATP-dependent refolding of heat-denatured proteins, such as firefly luciferase.
Abstract: The role of the abundant stress protein Hsp90 in protecting cells against stress-induced damage is not well understood. The recent discovery that a class of ansamycin antibiotics bind specifically to Hsp90 allowed us to address this problem from a new angle. We find that mammalian Hsp90, in cooperation with Hsp70, p60, and other factors, mediates the ATP-dependent refolding of heat-denatured proteins, such as firefly luciferase. Failure to refold results in proteolysis. The ansamycins inhibit refolding, both in vivo and in a cell extract, by preventing normal dissociation of Hsp90 from luciferase, causing its enhanced degradation. This mechanism also explains the ansamycin-induced proteolysis of several protooncogenic protein kinases, such as Raf-1, which interact with Hsp90. We propose that Hsp90 is part of a quality control system that facilitates protein refolding or degradation during recovery from stress. This function is used by a limited set of signal transduction molecules for their folding and regulation under nonstress conditions. The ansamycins shift the mode of Hsp90 from refolding to degradation, and this effect is probably amplified for specific Hsp90 substrates.

411 citations

Journal ArticleDOI
TL;DR: Synthese d'oligosaccharides a partir du tri-O-acetyl-3,4,6 glucal and du dimethyl -3,3 dioxiranne as mentioned in this paper.
Abstract: Synthese d'oligosaccharides a partir du tri-O-acetyl-3,4,6 glucal et du dimethyl-3,3 dioxiranne

387 citations

Journal ArticleDOI
TL;DR: It is reported that, when FTI is combined with some cytotoxic antineoplastic drugs, the effects on tumor cells are additive and imply that FTI may be a useful agent for the treatment of tumors with wild-type ras that are sensitive to taxanes.
Abstract: An important class of cellular proteins, which includes members of the p21ras family, undergoes posttranslational farnesylation, a modification required for their partition to membranes. Specific farnesyl transferase inhibitors (FTIs) have been developed that selectively inhibit the processing of these proteins. FTIs have been shown to be potent inhibitors of tumor cell growth in cell culture and in murine models and at doses that cause little toxicity to the animal. These data suggest that these drugs might be useful therapeutic agents. We now report that, when FTI is combined with some cytotoxic antineoplastic drugs, the effects on tumor cells are additive. No interference is noted. Furthermore, FTI and agents that prevent microtubule depolymerization, such as taxol or epothilones, act synergistically to inhibit cell growth. FTI causes increased sensitivity to induction of metaphase block by these agents, suggesting that a farnesylated protein may regulate the mitotic check point. The findings imply that FTI may be a useful agent for the treatment of tumors with wild-type ras that are sensitive to taxanes.

231 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The median-effect principle and its mass-action law based computer software are gaining increased applications in biomedical sciences, from how to effectively evaluate a single compound or entity to how to beneficially use multiple drugs or modalities in combination therapies.
Abstract: The median-effect equation derived from the mass-action law principle at equilibrium-steady state via mathematical induction and deduction for different reaction sequences and mechanisms and different types of inhibition has been shown to be the unified theory for the Michaelis-Menten equation, Hill equation, Henderson-Hasselbalch equation, and Scatchard equation. It is shown that dose and effect are interchangeable via defined parameters. This general equation for the single drug effect has been extended to the multiple drug effect equation for n drugs. These equations provide the theoretical basis for the combination index (CI)-isobologram equation that allows quantitative determination of drug interactions, where CI 1 indicate synergism, additive effect, and antagonism, respectively. Based on these algorithms, computer software has been developed to allow automated simulation of synergism and antagonism at all dose or effect levels. It displays the dose-effect curve, median-effect plot, combination index plot, isobologram, dose-reduction index plot, and polygonogram for in vitro or in vivo studies. This theoretical development, experimental design, and computerized data analysis have facilitated dose-effect analysis for single drug evaluation or carcinogen and radiation risk assessment, as well as for drug or other entity combinations in a vast field of disciplines of biomedical sciences. In this review, selected examples of applications are given, and step-by-step examples of experimental designs and real data analysis are also illustrated. The merging of the mass-action law principle with mathematical induction-deduction has been proven to be a unique and effective scientific method for general theory development. The median-effect principle and its mass-action law based computer software are gaining increased applications in biomedical sciences, from how to effectively evaluate a single compound or entity to how to beneficially use multiple drugs or modalities in combination therapies.

4,270 citations

Journal ArticleDOI
TL;DR: N-Heterocyclic carbenes have become universal ligands in organometallic and inorganic coordination chemistry as mentioned in this paper, and they not only bind to any transition metal, be it in low or high oxidation states, but also to main group elements such as beryllium, sulfur, and iodine.
Abstract: N-Heterocyclic carbenes have become universal ligands in organometallic and inorganic coordination chemistry. They not only bind to any transition metal, be it in low or high oxidation states, but also to main group elements such as beryllium, sulfur, and iodine. Because of their specific coordination chemistry, N-heterocyclic carbenes both stabilize and activate metal centers in quite different key catalytic steps of organic syntheses, for example, C-H activation, C-C, C-H, C-O, and C-N bond formation. There is now ample evidence that in the new generation of organometallic catalysts the established ligand class of organophosphanes will be supplemented and, in part, replaced by N-heterocyclic carbenes. Over the past few years, this chemistry has been the field of vivid scientific competition, and yielded previously unexpected successes in key areas of homogeneous catalysis. From the work in numerous academic laboratories and in industry, a revolutionary turning point in oraganometallic catalysis is emerging.

3,388 citations

Journal ArticleDOI
TL;DR: The discussion includes an analysis of trends in catalyst activity, a description of catalysts coordinated with N-heterocyclic carbene ligands, and an overview of ongoing work to improve the activity, stability, and selectivity of this family of L2X2Ru=CHR complexes.
Abstract: In recent years, the olefin metathesis reaction has attracted widespread attention as a versatile carbon−carbon bond-forming method. Many new applications have become possible because of major advances in catalyst design. State-of-the-art ruthenium catalysts are not only highly active but also compatible with most functional groups and easy to use. This Account traces the ideas and discoveries that were instrumental in the development of these catalysts, with particular emphasis on (PCy3)2Cl2RuCHPh and its derivatives. The discussion includes an analysis of trends in catalyst activity, a description of catalysts coordinated with N-heterocyclic carbene ligands, and an overview of ongoing work to improve the activity, stability, and selectivity of this family of L2X2RuCHR complexes.

3,229 citations

Journal ArticleDOI
TL;DR: The palladium-catalyzed cross-coupling reaction between organoboron compounds and organic halides or triflates provides a powerful and general methodology for the formation of carbon-carbon bonds as discussed by the authors.

2,712 citations

Journal ArticleDOI
03 Sep 1999-Science
TL;DR: It is shown that intraperitoneal injection of the 120-kilodalton beta-galactosidase protein, fused to the protein transduction domain from the human immunodeficiency virus TAT protein, results in delivery of the biologically active fusion protein to all tissues in mice, including the brain.
Abstract: Delivery of therapeutic proteins into tissues and across the blood-brain barrier is severely limited by the size and biochemical properties of the proteins. Here it is shown that intraperitoneal injection of the 120-kilodalton β-galactosidase protein, fused to the protein transduction domain from the human immunodeficiency virus TAT protein, results in delivery of the biologically active fusion protein to all tissues in mice, including the brain. These results open new possibilities for direct delivery of proteins into patients in the context of protein therapy, as well as for epigenetic experimentation with model organisms.

2,640 citations