scispace - formally typeset
Search or ask a question

Showing papers by "Samuel K. Ludwin published in 2016"


Journal ArticleDOI
TL;DR: Using microglia isolated from the adult human brain, it is demonstrated that myelin phagocytosis is dependent on the polarization state of the cells and defined and modulating the mechanisms that regulate the mechanisms has the potential to impact lesion and disease evolution in multiple sclerosis.
Abstract: Multifocal inflammatory lesions featuring destruction of lipid-rich myelin are pathologic hallmarks of multiple sclerosis. Lesion activity is assessed by the extent and composition of myelin uptake by myeloid cells present in such lesions. In the inflamed CNS, myeloid cells are comprised of brain-resident microglia, an endogenous cell population, and monocyte-derived macrophages, which infiltrate from the systemic compartment. Using microglia isolated from the adult human brain, we demonstrate that myelin phagocytosis is dependent on the polarization state of the cells. Myelin ingestion is significantly enhanced in cells exposed to TGF-β compared with resting basal conditions and markedly reduced in classically activated polarized cells. Transcriptional analysis indicated that TGF-β–treated microglia closely resembled M0 cells. The tyrosine kinase phagocytic receptor MerTK was one of the most upregulated among a select number of differentially expressed genes in TGF-β–treated microglia. In contrast, MerTK and its known ligands, growth arrest-specific 6 and Protein S, were downregulated in classically activated cells. MerTK expression and myelin phagocytosis were higher in CNS-derived microglia than observed in monocyte-derived macrophages, both basally and under all tested polarization conditions. Specific MerTK inhibitors reduced myelin phagocytosis and the resultant anti-inflammatory biased cytokine responses for both cell types. Defining and modulating the mechanisms that regulate myelin phagocytosis has the potential to impact lesion and disease evolution in multiple sclerosis. Relevant effects would include enhancing myelin clearance, increasing anti-inflammatory molecule production by myeloid cells, and thereby permitting subsequent tissue repair.

107 citations


Journal ArticleDOI
TL;DR: Continual study into the initiation, evolution, and resolution of the multiple sclerosis lesion offers the therapeutic opportunities to enhance the beneficial capabilities of these cells while limiting their destructive effects.
Abstract: Recent experimental and clinical studies on astrocytes are unraveling the capabilities of these multi-functional cells in normal homeostasis, and in central nervous system (CNS) disease. This review focuses on understanding their behavior in all aspects of the initiation, evolution, and resolution of the multiple sclerosis (MS) lesion. Astrocytes display remarkable flexibility and variability of their physical structure and biochemical output, each aspect finely tuned to the specific stage and location of the disease, participating in both pathogenic and beneficial changes seen in acute and progressive forms. As examples, chemo-attractive or repulsive molecules may facilitate the entry of destructive immune cells but may also aid in the recruitment of oligodendrocyte precursors, essential for repair. Pro-inflammatory cytokines may attack pathogenic cells and also destroy normal oligodendrocytes, myelin, and axons. Protective trophic factors may also open the blood-brain barrier and modulate the extracellular matrix to favor recruitment and persistence of CNS-specific immune cells. A chronic glial scar may confer structural support following tissue loss and inhibit ingress of further noxious insults and also inhibit migration of reparative cells and molecules into the damaged tissue. Continual study into these processes offers the therapeutic opportunities to enhance the beneficial capabilities of these cells while limiting their destructive effects.

94 citations


Journal ArticleDOI
TL;DR: An in vitro oligodendrogliopathy model using human CNS-derived OLs is developed and it is found that under stress conditions that induce significant process retraction with only marginal cell death, human OLs exhibited a significant reduction in overall energy utilization, particularly in glycolytic ATP production.
Abstract: Multiple sclerosis (MS) lesions feature demyelination with limited remyelination. A distinct injury phenotype of MS lesions features dying back of oligodendrocyte (OL) terminal processes, a response that destabilizes myelin/axon interactions. This oligodendrogliopathy has been linked with local metabolic stress, similar to the penumbra of ischemic/hypoxic states. Here, we developed an in vitro oligodendrogliopathy model using human CNS-derived OLs and related this injury response to their distinct bioenergetic properties. We determined the energy utilization properties of adult human surgically derived OLs cultured under either optimal or metabolic stress conditions, deprivation of growth factors, and glucose and/or hypoxia using a Seahorse extracellular flux analyzer. Baseline studies were also performed on OL progenitor cells derived from the same tissue and postnatal rat-derived cells. Under basal conditions, adult human OLs were less metabolically active than their progenitors and both were less active than the rat cells. Human OLs and progenitors both used aerobic glycolysis for the majority of ATP production, a process that contributes to protein and lipid production necessary for myelin biosynthesis. Under stress conditions that induce significant process retraction with only marginal cell death, human OLs exhibited a significant reduction in overall energy utilization, particularly in glycolytic ATP production. The stress-induced reduction of glycolytic ATP production by the human OLs would exacerbate myelin process withdrawal while favoring cell survival, providing a potential basis for the oligodendrogliopathy observed in MS. The glycolytic pathway is a potential therapeutic target to promote myelin maintenance and enhance repair in MS. SIGNIFICANCE STATEMENT The neurologic deficits that characterize multiple sclerosis (MS) reflect disruption of myelin (demyelination) within the CNS and failure of repair (remyelination). We define distinct energy utilization properties of human adult brain-derived oligodendrocytes and oligodendrocyte progenitor cells under conditions of metabolic stress that model the initial relapsing and subsequent progressive phases of MS. The observed changes in energy utilization affect both cell survival and myelination capacity. These processes may be amenable to therapeutic interventions to limit the extent of cumulative tissue injury and to promote repair in MS.

80 citations


Journal ArticleDOI
TL;DR: In the adult cerebral cortex, expression of miRNAs in morphologically distinct inter-laminar astrocytes underlying the glial limitans differed from those in deeper cortical layers, suggesting functional specialization possibly related to structural stability and defense from potentially harmful factors in the cerebrospinal fluid.
Abstract: Anatomic distribution and age are variables linked to functions of astrocytes under physiologic and pathologic conditions. We measured the relative expression of a panel of microRNAs (miRNAs) in astrocytes captured by laser micro-dissection from normal human adult white and grey matter, human fetal white matter and germinal matrix samples. Although expression of most miRNAs was comparable between adult and fetal samples, regional differences were observed. In the adult cerebral cortex, expression of miRNAs in morphologically distinct inter-laminar astrocytes underlying the glial limitans differed from those in deeper cortical layers, suggesting functional specialization possibly related to structural stability and defense from potentially harmful factors in the cerebrospinal fluid. Differences between adult white and grey matter miRNA expression included higher expression of pro-inflammatory miRNAs in the former, potentially contributing to differences in inflammation between grey and white matter plaques in multiple sclerosis. Lower expression of miRNAs in fetal versus adult white matter astrocytes likely reflects the immaturity of these migrating cells. Highly expressed miRNAs in the fetal germinal matrix are probably relevant in development and also recapitulate some responses to injury. Future studies can address regional alterations of miRNA expression in pathological conditions.

39 citations