scispace - formally typeset
Search or ask a question
Author

Samuel M. Webb

Bio: Samuel M. Webb is an academic researcher from SLAC National Accelerator Laboratory. The author has contributed to research in topics: Uranium & Birnessite. The author has an hindex of 48, co-authored 159 publications receiving 9373 citations. Previous affiliations of Samuel M. Webb include Massachusetts Institute of Technology & University of Florida.
Topics: Uranium, Birnessite, Oxide, Manganese, Diagenesis


Papers
More filters
Journal ArticleDOI
TL;DR: The primary Mn(IV) biooxide formed is a phyllomanganate most similar to δ-MnO2 or acid birnessite, and metal sequestration by the Mn biooxides occurs predominantly at vacant layer octahedral sites.
Abstract: ▪ Abstract Manganese(IV) oxides produced through microbial activity, i.e., biogenic Mn oxides or Mn biooxides, are believed to be the most abundant and highly reactive Mn oxide phases in the environment. They mediate redox reactions with organic and inorganic compounds and sequester a variety of metals. The major pathway for bacterial Mn(II) oxidation is enzymatic, and although bacteria that oxidize Mn(II) are phylogenetically diverse, they require a multicopper oxidase-like enzyme to oxidize Mn(II). The oxidation of Mn(II) to Mn(IV) occurs via a soluble or enzyme-complexed Mn(III) intermediate. The primary Mn(IV) biooxide formed is a phyllomanganate most similar to δ-MnO2 or acid birnessite. Metal sequestration by the Mn biooxides occurs predominantly at vacant layer octahedral sites.

1,131 citations

Journal ArticleDOI
TL;DR: Sam's Interface for XAS analysis Package (SIXPack) as discussed by the authors is a graphical user interface that allows users simple manipulation and analysis of data, which is particularly useful for analysis of geochemical and environmental systems.
Abstract: SIXPack (Sam's Interface for XAS analysis Package), a graphical user interface that allows users simple manipulation and analysis of data, is presented. The modules of SIXPack allow users to: (1) load, calibrate, and average raw data files; (2) perform background subtractions; (3) perform principal component analysis and target transforms; (4) perform least squares fitting of data to standards and functions; (5) perform EXAFS fitting to FEFF phase and amplitude files; (6) create single scattering FEFF phase and amplitude files using a periodic table interface. Novel features of the program allow for the fitted correction of XANES spectra due to self-absorption effects in unknown matrices, which is particularly useful for analysis of geochemical and environmental systems. The core of the XAS analysis routine uses IFEFFIT. SIXPack is developed in Python, is installable across many operating systems and platforms, and is freely available with an Open Source license.

1,035 citations

Journal ArticleDOI
TL;DR: In situ XAS measurements on a bifunctional manganese oxide catalyst with high electrochemical activity for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) demonstrate that the OER activity scales with film thickness, which suggests that the films have porous structure, which does not restrict electrocatalysis to the top geometric layer of the film.
Abstract: In situ X-ray absorption spectroscopy (XAS) is a powerful technique that can be applied to electrochemical systems, with the ability to elucidate the chemical nature of electrocatalysts under reaction conditions. In this study, we perform in situ XAS measurements on a bifunctional manganese oxide (MnOx) catalyst with high electrochemical activity for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). Using X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), we find that exposure to an ORR-relevant potential of 0.7 V vs RHE produces a disordered Mn3II,III,IIIO4 phase with negligible contributions from other phases. After the potential is increased to a highly anodic value of 1.8 V vs RHE, relevant to the OER, we observe an oxidation of approximately 80% of the catalytic thin film to form a mixed MnIII,IV oxide, while the remaining 20% of the film consists of a less oxidized phase, likely corresponding to unchanged Mn3II,III,IIIO4. XAS...

467 citations

Journal ArticleDOI
03 Jun 2011-Science
TL;DR: A bacterium is described, isolated from Mono Lake, California, that is able to substitute arsenic for phosphorus to sustain its growth and exchange of one of the major bio-elements may have profound evolutionary and geochemical importance.
Abstract: Life is mostly composed of the elements carbon, hydrogen, nitrogen, oxygen, sulfur, and phosphorus Although these six elements make up nucleic acids, proteins, and lipids and thus the bulk of living matter, it is theoretically possible that some other elements in the periodic table could serve the same functions Here, we describe a bacterium, strain GFAJ-1 of the Halomonadaceae, isolated from Mono Lake, California, that is able to substitute arsenic for phosphorus to sustain its growth Our data show evidence for arsenate in macromolecules that normally contain phosphate, most notably nucleic acids and proteins Exchange of one of the major bio-elements may have profound evolutionary and geochemical importance

455 citations

Journal ArticleDOI
TL;DR: It is shown that Mn(II) oxidation by spores of the marine Bacillus sp.
Abstract: Bacterial oxidation of Mn(II) to Mn(IV) is believed to drive the oxidative segment of the global biogeochemical Mn cycle and regulates the concentration of dissolved Mn(II) in the oceanic water column, where it is a critical nutrient for planktonic primary productivity. Mn(II) oxidizing activity is expressed by numerous phylogenetically diverse bacteria and fungi, suggesting that it plays a fundamental and ubiquitous role in the environment. This important redox system is believed to be driven by an enzyme or enzyme complex involving a multicopper oxidase, although the biochemical mechanism has never been conclusively demonstrated. Here, we show that Mn(II) oxidation by spores of the marine Bacillus sp. strain SG-1 is a result of two sequential one-step electron transfer processes, both requiring the putative multicopper oxidase, MnxG, in which Mn(III) is a transient intermediate. A kinetic model of the oxidation pathway is presented, which shows that the Mn(II) to Mn(III) step is the rate-limiting step. Thus, oxidation of Mn(II) appears to involve a unique multicopper oxidase system capable of the overall two-electron oxidation of its substrate. This enzyme system may serve as a source for environmental Mn(III), a strong oxidant and competitor for siderophore-bound Fe(III) in nutrient-limited environments. That metabolically dormant spores catalyze an important biogeochemical process intimately linked to the C, N, Fe, and S cycles requires us to rethink the role of spores in the environment.

308 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations

Journal ArticleDOI
TL;DR: Strong acids and bases seem to be the best desorbing agents to produce arsenic concentrates, and some commercial adsorbents which include resins, gels, silica, treated silica tested for arsenic removal come out to be superior.

3,168 citations

Journal ArticleDOI
TL;DR: This work reports on a novel and simple hydrothermal approach for the cutting of GSs into surface-functionalized GQDs, which were found to exhibit bright blue photoluminescence (PL), which has never been observed in GSs and GNRs owing to their large lateral sizes.
Abstract: 2010 WILEY-VCH Verlag Gm Graphene-based materials are promising building blocks for future nanodevices owing to their superior electronic, thermal, and mechanical properties as well as their chemical stability. However, currently available graphene-based materials produced by typical physical and chemical routes, including micromechanical cleavage, reduction of exfoliated graphene oxide (GO), and solvothermal synthesis, are generally micrometer-sized graphene sheets (GSs), which limits their direct application in nanodevices. In this context, it has become urgent to develop effective routes for cutting large GSs into nanometer-sized pieces with a well-confined shape, such as graphene nanoribbons (GNRs) and graphene quantum dots (GQDs). Theoretical and experimental studies have shown that narrow GNRs (width less than ca. 10 nm) exhibit substantial quantum confinement and edge effects that render GNRs semiconducting. By comparison, GQDs possess strong quantum confinement and edge effects when their sizes are down to 100 nm. If their sizes are reduced to ca. 10 nm, comparable with the widths of semiconducting GNRs, the two effects will become more pronounced and, hence, induce new physical properties. Up to now, nearly all experimental work on GNRs and GQDs has focused on their electron transportation properties. Little work has been done on the optical properties that are directly associated with the quantum confinement and/or edge effects. Most GNRand GQD-based electronic devices have been fabricated by lithography techniques, which can realize widths and diameters down to ca. 20 nm. This physical approach, however, is limited by the need for expensive equipment and especially by difficulties in obtaining smooth edges. Alternative chemical routes can overcome these drawbacks. Moreover, surface functionalization can be realized easily. Li et al. first reported a chemical route to functionalized and ultrasmooth GNRs with widths ranging from 50 nm to sub-10 nm. Very recently, Kosynkin et al. reported a simple solution-based oxidative process for producing GNRs by lengthwise cutting and unraveling of multiwalled carbon nanotube (CNT) side walls. Yet, no chemical routes have been reported so far for preparing functionalized GQDs with sub-10 nm sizes. Here, we report on a novel and simple hydrothermal approach for the cutting of GSs into surface-functionalized GQDs (ca. 9.6-nm average diameter). The functionalized GQDs were found to exhibit bright blue photoluminescence (PL), which has never been observed in GSs and GNRs owing to their large lateral sizes. The blue luminescence and new UV–vis absorption bands are directly induced by the large edge effect shown in the ultrafine GQDs. The starting material was micrometer-sized rippled GSs obtained by thermal reduction of GO sheets. Figure 1a shows a typical transmission electron microscopy (TEM) image of the pristine GSs. Their (002) interlayer spacing is 3.64 A (Fig. 1c), larger than that of bulk graphite (3.34 A). Before the hydrothermal treatment, the GSs were oxidized in concentrated H2SO4 and HNO3. After the oxidization treatment the GSs became slightly smaller (50 nm–2mm) and the (002) spacing slightly increased to 3.85 A (Fig. 1c). During the oxidation, oxygen-containing functional groups, including C1⁄4O/COOH, OH, and C O C, were introduced at the edge and on the basal plane, as shown in the Fourier transform infrared (FTIR) spectrum (Fig. 1d). The presence of these groups makes the GSs soluble in water. A series of more marked changes took place after the hydrothermal treatment of the oxidized GSs at 200 8C. First, the (002) spacing was reduced to 3.43 A (Fig. 1c), very close to that of bulk graphite, indicating that deoxidization occurs during the hydrothermal process. The deoxidization is further confirmed by the changes in the FTIR and C 1s X-ray photoelectron spectroscopy (XPS) spectra. After the hydrothermal treatment, the strongest vibrational absorption band of C1⁄4O/COOH at 1720 cm 1 became very weak and the vibration band of epoxy groups at 1052 cm 1 disappeared (Fig. 1d). In the XPS C 1s spectra of the oxidized and hydrothermally reduced GSs (Fig. 2a), the signal at 289 eV assigned to carboxyl groups became weak after the hydrothermal treatment, whereas the sp carbon peak at 284.4 eV was almost unchanged. Figure 2b shows the Raman spectrum of the reduced GSs. A G band at 1590 cm 1 and a D band at 1325 cm 1 were observed with a large intensity ratio ID/IG of 1.26. Second, the size of the GSs decreased dramatically and ultrafine GQDswere isolated by a dialysis process. Figure 3 shows typical TEM and atomic force microscopy (AFM) images of the GQDs. Their diameters are mainly distributed in the range of 5–13 nm (9.6 nm average diameter). Their topographic heights are mostly between 1 and 2 nm, similar to those observed in functionalized GNRs with 1–3 layers. More than 85% of the GQDs consist of 1–3 layers.

2,484 citations

Journal ArticleDOI
11 Jan 2017
TL;DR: In this article, the authors investigate progress towards photo-electrocatalytic water-splitting systems, with special emphasis on how they might be incorporated into photoelectrocaralyst systems.
Abstract: Sunlight is by far the most plentiful renewable energy resource, providing Earth with enough power to meet all of humanity's needs several hundred times over. However, it is both diffuse and intermittent, which presents problems regarding how best to harvest this energy and store it for times when the sun is not shining. Devices that use sunlight to split water into hydrogen and oxygen could be one solution to these problems, because hydrogen is an excellent fuel. However, if such devices are to become widely adopted, they must be cheap to produce and operate. Therefore, the development of electrocatalysts for water splitting that comprise only inexpensive, earth-abundant elements is critical. In this Review, we investigate progress towards such electrocatalysts, with special emphasis on how they might be incorporated into photoelectrocatalytic water-splitting systems and the challenges that remain in developing these devices. Splitting water is an attractive means by which energy — either electrical and/or light — is stored and consumed on demand. Active and efficient catalysts for anodic and cathodic reactions often require precious metals. This Review covers base-metal catalysts that can afford high performance in a more sustainable and available manner.

2,369 citations