scispace - formally typeset
Search or ask a question
Author

Samuel Weiss

Bio: Samuel Weiss is an academic researcher from University of Calgary. The author has contributed to research in topics: Neural stem cell & Stem cell. The author has an hindex of 64, co-authored 207 publications receiving 24921 citations. Previous affiliations of Samuel Weiss include Allen Institute for Brain Science & French Institute of Health and Medical Research.


Papers
More filters
Journal ArticleDOI
27 Mar 1992-Science
TL;DR: Cells of the adult mouse striatum have the capacity to divide and differentiate into neurons and astrocytes.
Abstract: Neurogenesis in the mammalian central nervous system is believed to end in the period just after birth; in the mouse striatum no new neurons are produced after the first few days after birth. In this study, cells isolated from the striatum of the adult mouse brain were induced to proliferate in vitro by epidermal growth factor. The proliferating cells initially expressed nestin, an intermediate filament found in neuroepithelial stem cells, and subsequently developed the morphology and antigenic properties of neurons and astrocytes. Newly generated cells with neuronal morphology were immunoreactive for gamma-aminobutyric acid and substance P, two neurotransmitters of the adult striatum in vivo. Thus, cells of the adult mouse striatum have the capacity to divide and differentiate into neurons and astrocytes.

5,497 citations

Journal ArticleDOI
TL;DR: It is suggested that EGF and/or TGF alpha may act on a multipotent progenitor cell in the striatum to generate both neurons and astrocytes.
Abstract: The mitogenic actions of epidermal growth factor (EGF) were examined in low-density, dissociated cultures of embryonic day 14 mouse striatal primordia, under serum-free defined conditions. EGF induced the proliferation of single progenitor cells that began to divide between 5 and 7 d in vitro, and after 13 d in vitro had formed a cluster of undifferentiated cells that expressed nestin, an intermediate filament present in neuroepithelial stem cells. In the continued presence of EGF, cells migrated from the proliferating core and differentiated into neurons and astrocytes. The actions of EGF were mimicked by the homolog transforming growth factor alpha (TGF alpha), but not by NGF, basic fibroblast growth factor, platelet-derived growth factor, or TGF beta. In EGF-generated cultures, cells with neuronal morphology contained immunoreactivity for GABA, substance P, and methionine-enkephalin, three neurotransmitters of the adult striatum. Amplification of embryonic day 14 striatal mRNA by using reverse transcription/PCR revealed mRNAs for EGF, TGF alpha, and the EGF receptor. These findings suggest that EGF and/or TGF alpha may act on a multipotent progenitor cell in the striatum to generate both neurons and astrocytes.

1,598 citations

Journal ArticleDOI
01 Nov 1994-Neuron
TL;DR: In vitro formation of clonally derived spheres of cells that exhibit stem cell properties such as self-maintenance and the generation of a large number of progeny comprising the major cell types found in the central nervous system suggest that a relatively quiescent subependymal cell is the in vivo source of neural stem cells.

1,482 citations

Journal ArticleDOI
TL;DR: This study describes the first demonstration, through clonal and population analyses in vitro, of a mammalian CNS stem cell that proliferates in response to an identified growth factor (EGF) and produces the three principal cell types of the CNS.

1,462 citations

Journal ArticleDOI
TL;DR: The spinal cord and the entire ventricular neuroaxis of the adult mammalian CNS contain multipotent stem cells, present at variable frequency and with unique in vitro activation requirements.
Abstract: Neural stem cells in the lateral ventricles of the adult mouse CNS participate in repopulation of forebrain structures in vivo and are amenable to in vitro expansion by epidermal growth factor (EGF). There have been no reports of stem cells in more caudal brain regions or in the spinal cord of adult mammals. In this study we found that although ineffective alone, EGF and basic fibroblast growth factor (bFGF) cooperated to induce the proliferation, self-renewal, and expansion of neural stem cells isolated from the adult mouse thoracic spinal cord. The proliferating stem cells, in both primary culture and secondary expanded clones, formed spheres of undifferentiated cells that were induced to differentiate into neurons, astrocytes, and oligodendrocytes. Neural stem cells, whose proliferation was dependent on EGF+bFGF, were also isolated from the lumbar/sacral segment of the spinal cord as well as the third and fourth ventricles (but not adjacent brain parenchyma). Although all of the stem cells examined were similarly multipotent and expandable, quantitative analyses demonstrated that the lateral ventricles (EGF-dependent) and lumbar/sacral spinal cord (EGF+bFGF-dependent) yielded the greatest number of these cells. Thus, the spinal cord and the entire ventricular neuroaxis of the adult mammalian CNS contain multipotent stem cells, present at variable frequency and with unique in vitro activation requirements.

1,286 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: To confirm whether adipose tissue contains stem cells, the PLA population and multiple clonal isolates were analyzed using several molecular and biochemical approaches and PLA cells exhibited unique characteristics distinct from those seen in MSCs, including differences in CD marker profile and gene expression.
Abstract: Much of the work conducted on adult stem cells has focused on mesenchymal stem cells (MSCs) found within the bone marrow stroma. Adipose tissue, like bone marrow, is derived from the embryonic mesenchyme and contains a stroma that is easily isolated. Preliminary studies have recently identified a putative stem cell population within the adipose stromal compartment. This cell population, termed processed lipoaspirate (PLA) cells, can be isolated from human lipoaspirates and, like MSCs, differentiate toward the osteogenic, adipogenic, myogenic, and chondrogenic lineages. To confirm whether adipose tissue contains stem cells, the PLA population and multiple clonal isolates were analyzed using several molecular and biochemical approaches. PLA cells expressed multiple CD marker antigens similar to those observed on MSCs. Mesodermal lineage induction of PLA cells and clones resulted in the expression of multiple lineage-specific genes and proteins. Furthermore, biochemical analysis also confirmed lineage-specific activity. In addition to mesodermal capacity, PLA cells and clones differentiated into putative neurogenic cells, exhibiting a neuronal-like morphology and expressing several proteins consistent with the neuronal phenotype. Finally, PLA cells exhibited unique characteristics distinct from those seen in MSCs, including differences in CD marker profile and gene expression.

6,473 citations

Journal ArticleDOI
07 Dec 2006-Nature
TL;DR: This work shows that cancer stem cells contribute to glioma radioresistance through preferential activation of the DNA damage checkpoint response and an increase in DNA repair capacity, and suggests that CD133-positive tumour cells could be the source of tumour recurrence after radiation.
Abstract: Ionizing radiation represents the most effective therapy for glioblastoma (World Health Organization grade IV glioma), one of the most lethal human malignancies, but radiotherapy remains only palliative because of radioresistance. The mechanisms underlying tumour radioresistance have remained elusive. Here we show that cancer stem cells contribute to glioma radioresistance through preferential activation of the DNA damage checkpoint response and an increase in DNA repair capacity. The fraction of tumour cells expressing CD133 (Prominin-1), a marker for both neural stem cells and brain cancer stem cells, is enriched after radiation in gliomas. In both cell culture and the brains of immunocompromised mice, CD133-expressing glioma cells survive ionizing radiation in increased proportions relative to most tumour cells, which lack CD133. CD133-expressing tumour cells isolated from both human glioma xenografts and primary patient glioblastoma specimens preferentially activate the DNA damage checkpoint in response to radiation, and repair radiation-induced DNA damage more effectively than CD133-negative tumour cells. In addition, the radioresistance of CD133-positive glioma stem cells can be reversed with a specific inhibitor of the Chk1 and Chk2 checkpoint kinases. Our results suggest that CD133-positive tumour cells represent the cellular population that confers glioma radioresistance and could be the source of tumour recurrence after radiation. Targeting DNA damage checkpoint response in cancer stem cells may overcome this radioresistance and provide a therapeutic model for malignant brain cancers.

5,771 citations

Journal ArticleDOI
27 Mar 1992-Science
TL;DR: Cells of the adult mouse striatum have the capacity to divide and differentiate into neurons and astrocytes.
Abstract: Neurogenesis in the mammalian central nervous system is believed to end in the period just after birth; in the mouse striatum no new neurons are produced after the first few days after birth. In this study, cells isolated from the striatum of the adult mouse brain were induced to proliferate in vitro by epidermal growth factor. The proliferating cells initially expressed nestin, an intermediate filament found in neuroepithelial stem cells, and subsequently developed the morphology and antigenic properties of neurons and astrocytes. Newly generated cells with neuronal morphology were immunoreactive for gamma-aminobutyric acid and substance P, two neurotransmitters of the adult striatum in vivo. Thus, cells of the adult mouse striatum have the capacity to divide and differentiate into neurons and astrocytes.

5,497 citations

Journal Article
TL;DR: The identification and purification of a cancer stem cell from human brain tumors of different phenotypes that possesses a marked capacity for proliferation, self-renewal, and differentiation is reported.
Abstract: Most current research on human brain tumors is focused on the molecular and cellular analysis of the bulk tumor mass. However, there is overwhelming evidence in some malignancies that the tumor clone is heterogeneous with respect to proliferation and differentiation. In human leukemia, the tumor clone is organized as a hierarchy that originates from rare leukemic stem cells that possess extensive proliferative and self-renewal potential, and are responsible for maintaining the tumor clone. We report here the identification and purification of a cancer stem cell from human brain tumors of different phenotypes that possesses a marked capacity for proliferation, self-renewal, and differentiation. The increased self-renewal capacity of the brain tumor stem cell (BTSC) was highest from the most aggressive clinical samples of medulloblastoma compared with low-grade gliomas. The BTSC was exclusively isolated with the cell fraction expressing the neural stem cell surface marker CD133. These CD133+ cells could differentiate in culture into tumor cells that phenotypically resembled the tumor from the patient. The identification of a BTSC provides a powerful tool to investigate the tumorigenic process in the central nervous system and to develop therapies targeted to the BTSC.

4,899 citations

Journal ArticleDOI
25 Feb 2000-Science
TL;DR: Before the full potential of neural stem cells can be realized, the authors need to learn what controls their proliferation, as well as the various pathways of differentiation available to their daughter cells.
Abstract: Neural stem cells exist not only in the developing mammalian nervous system but also in the adult nervous system of all mammalian organisms, including humans. Neural stem cells can also be derived from more primitive embryonic stem cells. The location of the adult stem cells and the brain regions to which their progeny migrate in order to differentiate remain unresolved, although the number of viable locations is limited in the adult. The mechanisms that regulate endogenous stem cells are poorly understood. Potential uses of stem cells in repair include transplantation to repair missing cells and the activation of endogenous cells to provide "self-repair. " Before the full potential of neural stem cells can be realized, we need to learn what controls their proliferation, as well as the various pathways of differentiation available to their daughter cells.

4,608 citations