scispace - formally typeset
Search or ask a question
Author

Samyak Parajuli

Bio: Samyak Parajuli is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Artificial neural network & Reinforcement learning. The author has an hindex of 3, co-authored 6 publications receiving 188 citations.

Papers
More filters
Posted Content
TL;DR: It is found that using larger models and artificial data augmentations can improve robustness on real-world distribution shifts, contrary to claims in prior work.
Abstract: We introduce four new real-world distribution shift datasets consisting of changes in image style, image blurriness, geographic location, camera operation, and more With our new datasets, we take stock of previously proposed methods for improving out-of-distribution robustness and put them to the test We find that using larger models and artificial data augmentations can improve robustness on real-world distribution shifts, contrary to claims in prior work We find improvements in artificial robustness benchmarks can transfer to real-world distribution shifts, contrary to claims in prior work Motivated by our observation that data augmentations can help with real-world distribution shifts, we also introduce a new data augmentation method which advances the state-of-the-art and outperforms models pretrained with 1000 times more labeled data Overall we find that some methods consistently help with distribution shifts in texture and local image statistics, but these methods do not help with some other distribution shifts like geographic changes Our results show that future research must study multiple distribution shifts simultaneously, as we demonstrate that no evaluated method consistently improves robustness

739 citations

Proceedings Article
29 Jun 2020
TL;DR: In this article, the authors introduce four new real-world distribution shift datasets consisting of changes in image style, image blurriness, geographic location, camera operation, and more.
Abstract: We introduce four new real-world distribution shift datasets consisting of changes in image style, image blurriness, geographic location, camera operation, and more. With our new datasets, we take stock of previously proposed methods for improving out-of-distribution robustness and put them to the test. We find that using larger models and artificial data augmentations can improve robustness on real-world distribution shifts, contrary to claims in prior work. We find improvements in artificial robustness benchmarks can transfer to real-world distribution shifts, contrary to claims in prior work. Motivated by our observation that data augmentations can help with real-world distribution shifts, we also introduce a new data augmentation method which advances the state-of-the-art and outperforms models pretrained with 1000 times more labeled data. Overall we find that some methods consistently help with distribution shifts in texture and local image statistics, but these methods do not help with some other distribution shifts like geographic changes. Our results show that future research must study multiple distribution shifts simultaneously, as we demonstrate that no evaluated method consistently improves robustness.

15 citations

Posted Content
TL;DR: It is hypothesized that improved cooperation between the internal agents of a hierarchy can simplify the credit assignment problem from the perspective of the high-level policies, thereby leading to significant improvements to training in situations where intricate sets of action primitives must be performed to yield improvements in performance.
Abstract: Hierarchical models for deep reinforcement learning (RL) have emerged as powerful methods for generating meaningful control strategies in difficult long time horizon tasks. Training of said hierarchical models, however, continue to suffer from instabilities that limit their applicability. In this paper, we address instabilities that arise from the concurrent optimization of goal-assignment and goal-achievement policies. Drawing connections between this concurrent optimization scheme and communication and cooperation in multi-agent RL, we redefine the standard optimization procedure to explicitly promote cooperation between these disparate tasks. Our method is demonstrated to achieve superior results to existing techniques in a set of difficult long time horizon tasks, and serves to expand the scope of solvable tasks by hierarchical reinforcement learning. Videos of the results are available at: this https URL.

8 citations

Posted Content
TL;DR: Generalized Ternary Connect is proposed, which allows an arbitrary number of levels while at the same time eliminating multiplications by restricting the parameters to integer powers of two, and demonstrates superior compression and similar accuracy of GTC in comparison to several state-of-the-art methods for neural network compression.
Abstract: The use of deep neural networks in edge computing devices hinges on the balance between accuracy and complexity of computations. Ternary Connect (TC) \cite{lin2015neural} addresses this issue by restricting the parameters to three levels $-1, 0$, and $+1$, thus eliminating multiplications in the forward pass of the network during prediction. We propose Generalized Ternary Connect (GTC), which allows an arbitrary number of levels while at the same time eliminating multiplications by restricting the parameters to integer powers of two. The primary contribution is that GTC learns the number of levels and their values for each layer, jointly with the weights of the network in an end-to-end fashion. Experiments on MNIST and CIFAR-10 show that GTC naturally converges to an `almost binary' network for deep classification networks (e.g. VGG-16) and deep variational auto-encoders, with negligible loss of classification accuracy and comparable visual quality of generated samples respectively. We demonstrate superior compression and similar accuracy of GTC in comparison to several state-of-the-art methods for neural network compression. We conclude with simulations showing the potential benefits of GTC in hardware.

6 citations

Posted Content
TL;DR: This work presents a runtime throttleable neural network (TNN) that can adaptively self-regulate its own performance target and computing resources and designed TNN with several properties that enable more flexibility for dynamic execution based on runtime context.
Abstract: Conditional computation for Deep Neural Networks (DNNs) reduce overall computational load and improve model accuracy by running a subset of the network. In this work, we present a runtime throttleable neural network (TNN) that can adaptively self-regulate its own performance target and computing resources. We designed TNN with several properties that enable more flexibility for dynamic execution based on runtime context. TNNs are defined as throttleable modules gated with a separately trained controller that generates a single utilization control parameter. We validate our proposal on a number of experiments, including Convolution Neural Networks (CNNs such as VGG, ResNet, ResNeXt, DenseNet) using CiFAR-10 and ImageNet dataset, for object classification and recognition tasks. We also demonstrate the effectiveness of dynamic TNN execution on a 3D Convolustion Network (C3D) for a hand gesture task. Results show that TNN can maintain peak accuracy performance compared to vanilla solutions, while providing a graceful reduction in computational requirement, down to 74% reduction in latency and 52% energy savings.

4 citations


Cited by
More filters
01 Jan 2006

3,012 citations

Proceedings ArticleDOI
10 Jan 2022
TL;DR: This work gradually “modernize” a standard ResNet toward the design of a vision Transformer, and discovers several key components that contribute to the performance difference along the way, leading to a family of pure ConvNet models dubbed ConvNeXt.
Abstract: The “Roaring 20s” of visual recognition began with the introduction of Vision Transformers (ViTs), which quickly superseded ConvNets as the state-of-the-art image classification model. A vanilla ViT, on the other hand, faces difficulties when applied to general computer vision tasks such as object detection and semantic segmentation. It is the hierarchical Transformers (e.g., Swin Transformers) that reintroduced several ConvNet priors, making Transformers practically viable as a generic vision backbone and demonstrating remarkable performance on a wide variety of vision tasks. However, the effectiveness of such hybrid approaches is still largely credited to the intrinsic superiority of Transformers, rather than the inherent inductive biases of convolutions. In this work, we reexamine the design spaces and test the limits of what a pure ConvNet can achieve. We gradually “modernize” a standard ResNet toward the design of a vision Transformer, and discover several key components that contribute to the performance difference along the way. The outcome of this exploration is a family of pure ConvNet models dubbed ConvNeXt. Constructed entirely from standard ConvNet modules, ConvNeXts compete favorably with Transformers in terms of accuracy and scalability, achieving 87.8% ImageNet top-1 accuracy and outperforming Swin Transformers on COCO detection and ADE20K segmentation, while maintaining the simplicity and efficiency of standard ConvNets.

1,203 citations

Posted Content
TL;DR: WILDS is presented, a benchmark of in-the-wild distribution shifts spanning diverse data modalities and applications, and is hoped to encourage the development of general-purpose methods that are anchored to real-world distribution shifts and that work well across different applications and problem settings.
Abstract: Distribution shifts -- where the training distribution differs from the test distribution -- can substantially degrade the accuracy of machine learning (ML) systems deployed in the wild. Despite their ubiquity, these real-world distribution shifts are under-represented in the datasets widely used in the ML community today. To address this gap, we present WILDS, a curated collection of 8 benchmark datasets that reflect a diverse range of distribution shifts which naturally arise in real-world applications, such as shifts across hospitals for tumor identification; across camera traps for wildlife monitoring; and across time and location in satellite imaging and poverty mapping. On each dataset, we show that standard training results in substantially lower out-of-distribution than in-distribution performance, and that this gap remains even with models trained by existing methods for handling distribution shifts. This underscores the need for new training methods that produce models which are more robust to the types of distribution shifts that arise in practice. To facilitate method development, we provide an open-source package that automates dataset loading, contains default model architectures and hyperparameters, and standardizes evaluations. Code and leaderboards are available at this https URL.

579 citations

Posted Content
TL;DR: This work introduces two challenging datasets that reliably cause machine learning model performance to substantially degrade and curates an adversarial out-of-distribution detection dataset called IMAGENET-O, which is the first out- of-dist distribution detection dataset created for ImageNet models.
Abstract: We introduce two challenging datasets that reliably cause machine learning model performance to substantially degrade. The datasets are collected with a simple adversarial filtration technique to create datasets with limited spurious cues. Our datasets' real-world, unmodified examples transfer to various unseen models reliably, demonstrating that computer vision models have shared weaknesses. The first dataset is called ImageNet-A and is like the ImageNet test set, but it is far more challenging for existing models. We also curate an adversarial out-of-distribution detection dataset called ImageNet-O, which is the first out-of-distribution detection dataset created for ImageNet models. On ImageNet-A a DenseNet-121 obtains around 2% accuracy, an accuracy drop of approximately 90%, and its out-of-distribution detection performance on ImageNet-O is near random chance levels. We find that existing data augmentation techniques hardly boost performance, and using other public training datasets provides improvements that are limited. However, we find that improvements to computer vision architectures provide a promising path towards robust models.

550 citations

Proceedings ArticleDOI
01 Jun 2022
TL;DR: ConvNeXt as discussed by the authors is a family of pure ConvNet models, which compete favorably with Transformers in terms of accuracy and scalability, achieving 87.8% ImageNet top-1 accuracy and outperforming Swin Transformers on COCO detection and ADE20K segmentation.
Abstract: The “Roaring 20s” of visual recognition began with the introduction of Vision Transformers (ViTs), which quickly superseded ConvNets as the state-of-the-art image classification model. A vanilla ViT, on the other hand, faces difficulties when applied to general computer vision tasks such as object detection and semantic segmentation. It is the hierarchical Transformers (e.g., Swin Transformers) that reintroduced several ConvNet priors, making Transformers practically viable as a generic vision backbone and demonstrating remarkable performance on a wide variety of vision tasks. However, the effectiveness of such hybrid approaches is still largely credited to the intrinsic superiority of Transformers, rather than the inherent inductive biases of convolutions. In this work, we reexamine the design spaces and test the limits of what a pure ConvNet can achieve. We gradually “modernize” a standard ResNet toward the design of a vision Transformer, and discover several key components that contribute to the performance difference along the way. The outcome of this exploration is a family of pure ConvNet models dubbed ConvNeXt. Constructed entirely from standard ConvNet modules, ConvNeXts compete favorably with Transformers in terms of accuracy and scalability, achieving 87.8% ImageNet top-1 accuracy and outperforming Swin Transformers on COCO detection and ADE20K segmentation, while maintaining the simplicity and efficiency of standard ConvNets.

502 citations