scispace - formally typeset
Search or ask a question
Author

Sandeep Panda

Bio: Sandeep Panda is an academic researcher from Süleyman Demirel University. The author has contributed to research in topics: Bioleaching & Fermentation. The author has an hindex of 23, co-authored 88 publications receiving 1671 citations. Previous affiliations of Sandeep Panda include North Orissa University & University of Johannesburg.


Papers
More filters
Journal ArticleDOI
TL;DR: Advances in the designing of heap bioleaching plant along with microbial and environmental factors of importance have been reviewed with conclusions into the future prospects of chalcopyriteBioleaching.

172 citations

Journal ArticleDOI
TL;DR: The advances in genetic engineering for improvement of microbial strains in order to enhance the production of the value added bio-products as well as the concept of zero-waste economy have been briefly discussed.

146 citations

Journal ArticleDOI
TL;DR: It is believed that the metabolic insights into the Fe (III) reduction systems of the model DIRB; Shewanella and Geobacter can be a basis for metabolic engineering to provide improved practical applications and the forthcoming years will see more applications of microbial iron reducers based on the existing as well as advanced metabolic informations available in open source literature.
Abstract: Advances in applied and industrial microbial biotechnology have opened up many new avenues for application of several microorganisms. A group of certain metal reducers such as the dissimilatory iron reducing microorganisms possess an inherent potential to reduce oxidized metals under strict anaerobic/facultative anaerobic condition, thereby opening possibilities to combat environmental pollution. This unique property has invited researchers towards understanding the metabolic regulatory pathways that enables the microbes to thrive under extreme environmental conditions. Currently, dissimilatory iron reducing bacteria (DIRB) is in the focus of researchers to elucidate the specific mechanisms responsible for microbial metal reduction. The recent advances towards understanding the metabolism of iron reduction in Shewanella and Geobacter, the model DIRB has been covered in this review. It is believed that the metabolic insights into the Fe (III) reduction systems of the model DIRB; Shewanella and Geobacter (as discussed in the review) can be a basis for metabolic engineering to provide improved practical applications. With the advancement of our existing knowledge on the metabolic processes of the model iron reducers, applications ranging from laboratory to field scale practices can be carried out. DIRB has gained immense interest for its application in the field of bioremediation, electrobiosynthesis, and bioelectronics in this decade. It can therefore be anticipated that the forthcoming years will see more applications of microbial iron reducers based on the existing as well as advanced metabolic informations available in open source literature.

134 citations

Journal ArticleDOI
TL;DR: The bottleneck in commercialization, integrated approach for improved production, techno-economical feasibility and real-life uses of some of the high value-end biocommodities, as well as research gaps and future directions are discussed.
Abstract: The review focuses on some of the high value-end biocommodities, such as fermented beverages, single-cell proteins, single-cell oils, biocolors, flavors, fragrances, polysaccharides, biopesticides, plant growth regulators, bioethanol, biogas and biohydrogen, developed from the microbial processing of fruit and vegetable wastes. Microbial detoxification of fruit and vegetable processing effluents is briefly described. The advances in genetic engineering of microorganisms for enhanced yield of the above-mentioned biocommodities are elucidated with selected examples. The bottleneck in commercialization, integrated approach for improved production, techno-economical feasibility and real-life uses of some of these biocommodities, as well as research gaps and future directions are discussed.

82 citations


Cited by
More filters
Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Journal ArticleDOI
TL;DR: The most commonly used technologies for the treatment and valorization of the organic fraction of municipal solid waste (MSW) are composting and anaerobic digestion (AD) as discussed by the authors.

752 citations

Journal Article
TL;DR: A review of the turn of events and points of view of biogas in and its utilization for power, heat and in transport in the European Union (EU) and its Member States is presented in this article.
Abstract: This paper presents a review of the turn of events and points of view of biogas in and its utilization for power, heat and in transport in the European Union (EU) and its Member States. Biogas creation has expanded in the EU, empowered by the sustainable power strategies, notwithstanding monetary, ecological and atmosphere benefits, to arrive at 18 billion m3 methane (654 PJ) in 2015, speaking to half of the worldwide biogas creation. The EU is the world chief in biogas power creation, with more than 10 GW introduced and various 17,400 biogas plants, in contrast with the worldwide biogas limit of 15 GW in 2015. In the EU, biogas conveyed 127 TJ of warmth and 61 TWh of power in 2015; about half of absolute biogas utilization in Europe was bound to warm age. Europe is the world's driving maker of biomethane for the utilization as a vehicle fuel or for infusion into the petroleum gas network, with 459 plants in 2015 creating 1.2 billion m3 and 340 plants taking care of into the gas network, with a limit of 1.5 million m3. Around 697 biomethane filling stations guaranteed the utilization 160 million m3 of biomethane as a transport fuel in 2015.

703 citations

Journal ArticleDOI
TL;DR: The types and nature of the waste that originates from fruits and vegetables, the bioactive components in the waste, their extraction techniques, and the potential utilization of the obtained bioactive compounds are described.
Abstract: Fruits and vegetables are the most utilized commodities among all horticultural crops. They are consumed raw, minimally processed, as well as processed, due to their nutrients and health-promoting compounds. With the growing population and changing diet habits, the production and processing of horticultural crops, especially fruits and vegetables, have increased very significantly to fulfill the increasing demands. Significant losses and waste in the fresh and processing industries are becoming a serious nutritional, economical, and environmental problem. For example, the United Nations Food and Agriculture Organization (FAO) has estimated that losses and waste in fruits and vegetables are the highest among all types of foods, and may reach up to 60%. The processing operations of fruits and vegetables produce significant wastes of by-products, which constitute about 25% to 30% of a whole commodity group. The waste is composed mainly of seed, skin, rind, and pomace, containing good sources of potentially valuable bioactive compounds, such as carotenoids, polyphenols, dietary fibers, vitamins, enzymes, and oils, among others. These phytochemicals can be utilized in different industries including the food industry, for the development of functional or enriched foods, the health industry for medicines and pharmaceuticals, and the textile industry, among others. The use of waste for the production of various crucial bioactive components is an important step toward sustainable development. This review describes the types and nature of the waste that originates from fruits and vegetables, the bioactive components in the waste, their extraction techniques, and the potential utilization of the obtained bioactive compounds.

624 citations

01 Jan 2009
TL;DR: In this paper, cyclic voltammetry (CV) of wild type (WT) and mutant G. sulfurreducens strains was used to demonstrate the use of bound extracellular electron transfer mediators by Geobacter biofilms and the distinct roles of OmcB and OmcZ.
Abstract: Geobacteracea are distinct for their ability to reduce insoluble oxidants including minerals and electrodes without apparent reliance on soluble extracellular electron transfer (ET) mediators. This property makes them important anode catalysts in new generation microbial fuel cells (MFCs) because it obviates the need to replenish ET mediators otherwise necessary to sustain power. Here we report cyclic voltammetry (CV) of biofilms of wild type (WT) and mutant G. sulfurreducens strains grown on graphite cloth anodes acting as electron acceptors with acetate as the electron donor. Our analysis indicates that WT biofilms contain a conductive network of bound ET mediators in which OmcZ (outer membrane c-type cytochrome Z) participates in homogeneous ET (through the biofilm bulk) while OmcB mediates heterogeneous ET (across the biofilm/electrode interface); that type IV pili are important in both reactions; that OmcS plays a secondary role in homogenous ET; that OmcE, important in Fe(III) oxide reduction, is not involved in either reaction; that catalytic current is limited overall by the rate of microbial uptake of acetate; that protons generated from acetate oxidation act as charge compensating ions in homogenous ET; and that homogenous ET, when accelerated by fast voltammetric scan rates, is limited by diffusion of protons within the biofilm. These results provide the first direct electrochemical evidence substantiating utilization of bound ET mediators by Geobacter biofilms and the distinct roles of OmcB and OmcZ in the extracellular ET properties of anode-reducing G. sulfurreducens.

373 citations