scispace - formally typeset
Search or ask a question
Author

Sander C.G. Leeuwenburgh

Bio: Sander C.G. Leeuwenburgh is an academic researcher from Radboud University Nijmegen. The author has contributed to research in topics: Bone regeneration & Self-healing hydrogels. The author has an hindex of 43, co-authored 179 publications receiving 5635 citations. Previous affiliations of Sander C.G. Leeuwenburgh include Philips & National Research Council.


Papers
More filters
Journal ArticleDOI
TL;DR: The combination of both organic and inorganic constituents is expected to result into truly bone-resembling coatings, and as such to a new generation of surface-modified titanium implants with improved functionality and biological efficacy.
Abstract: This paper reviews current physicochemical and biochemical coating techniques that are investigated to enhance bone regeneration at the interface of titanium implant materials. By applying coatings onto titanium surfaces that mimic the organic and inorganic components of living bone tissue, a physiological transition between the non-physiological titanium surface and surrounding bone tissue can be established. In this way, the coated titanium implants stimulate bone formation from the implant surface, thereby enhancing early and strong fixation of bone-substituting implants. As such, a continuous transition from bone tissue to implant surface is induced. This review presents an overview of various techniques that can be used to this end, and that are inspired by either inorganic (calcium phosphate) or organic (extracellular matrix components, growth factors, enzymes, etc.) components of natural bone tissue. The combination, however, of both organic and inorganic constituents is expected to result into truly bone-resembling coatings, and as such to a new generation of surface-modified titanium implants with improved functionality and biological efficacy.

327 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide an overview of recent trends and strategies in surface engineering that are currently investigated to improve the biological performance of bone implants in terms of functionality and biological efficacy.
Abstract: The mechanical and biological properties of bone implants need to be optimal to form a quick and firm connection with the surrounding environment in load bearing applications. Bone is a connective tissue composed of an organic collagenous matrix, a fine dispersion of reinforcing inorganic (calcium phosphate) nanocrystals, and bone-forming and -degrading cells. These different components have a synergistic and hierarchical structure that renders bone tissue properties unique in terms of hardness, flexibility and regenerative capacity. Metallic and polymeric materials offer mechanical strength and/or resilience that are required to simulate bone tissue in load-bearing applications in terms of maximum load, bending and fatigue strength. Nevertheless, the interaction between devices and the surrounding tissue at the implant interface is essential for success or failure of implants. In that respect, coatings can be applied to facilitate the process of bone healing and obtain a continuous transition from living tissue to the synthetic implant. Compounds that are inspired by inorganic (e.g., hydroxyapatite crystals) or organic (e.g., collagen, extracellular matrix components, enzymes) components of bone tissue, are the most obvious candidates for application as implant coating to improve the performance of bone implants. This review provides an overview of recent trends and strategies in surface engineering that are currently investigated to improve the biological performance of bone implants in terms of functionality and biological efficacy.

217 citations

Journal ArticleDOI
TL;DR: This review summarizes the main strategies that have been developed in the past decade to calcify hydrogel matrices and render these hydrogels suitable for applications in bone regeneration.
Abstract: Hydrogels are an important class of highly hydrated polymers that are widely investigated for potential use in soft tissue engineering. Generally, however, hydrogels lack the ability to mineralize, preventing the formation of chemical bonds with hard tissues such as bone. A recent trend in tissue engineering involves the development of hydrogels that possess the capacity to mineralize. The strategy that has attracted most interest has been the incorporation of inorganic phases such as calcium phosphate ceramics and bioglasses into hydrogel matrices. These inorganic particles act as nucleation sites that enable further mineralization, thus improving the mechanical properties of the composite material. A second route to create nucleation sites for calcification of hydrogels involves the use of features from the physiological mineralization process. Examples of these biomimetic mineralization strategies include (1) soaking of hydrogels in solutions that are saturated with respect to calcium phosphate, (2) incorporation of enzymes that catalyze deposition of bone mineral, and (3) incorporation of synthetic analogues to matrix vesicles that are the initial sites of biomineralization. Functionalization of the polymeric hydrogel backbone with negatively charged groups is a third mechanism to promote mineralization in otherwise inert hydrogels. This review summarizes the main strategies that have been developed in the past decade to calcify hydrogel matrices and render these hydrogels suitable for applications in bone regeneration.

214 citations

Journal ArticleDOI
TL;DR: The major focus is to highlight the wide range of applications of piezoelectric nano‐biomaterials in drug delivery, theranostics, and tissue regeneration, with specific focus on barium titanate, zinc oxide, and polyvinylidene fluoride.
Abstract: Among various classes of biomaterials, the majority of non-centrosymmetric crystalline materials exhibit piezoelectric properties, i.e., the accumulation of charge in response to applied mechanical stress or deformation. Due to the growing interest in nanomaterials, piezoelectric nano-biomaterials have been widely investigated, leading to remarkable advancements throughout the last two decades. Piezoelectric properties, high surface energy, targeting properties, and intricate cell–material interactions render piezoelectric nanomaterials highly attractive for application in therapeutics as well as regenerative medicine. Herein, the major focus is to highlight the wide range of applications of piezoelectric nano-biomaterials in drug delivery, theranostics, and tissue regeneration. After a brief introduction to piezoelectricity, an overview is provided on the major classes of piezoelectric biomaterials as well as a description of the origin of biopiezoelectricity in different tissues and macromolecules. Subsequently, relevant properties and postfabrication strategies of nanostructured piezoelectric biomaterials are discussed aiming to maximize piezoresponse. Finally, recent studies on nanopiezoceramics and piezopolymers are presented, with specific focus on barium titanate, zinc oxide, and polyvinylidene fluoride.

201 citations

Journal ArticleDOI
19 Aug 2013-PLOS ONE
TL;DR: It is shown that 3D printing of controlled release particles is feasible and that the released BMP-2 directs osteogenic differentiation in vitro and in vivo and significantly increased bone formation.
Abstract: The design of bioactive three-dimensional (3D) scaffolds is a major focus in bone tissue engineering. Incorporation of growth factors into bioprinted scaffolds offers many new possibilities regarding both biological and architectural properties of the scaffolds. This study investigates whether the sustained release of bone morphogenetic protein 2 (BMP-2) influences osteogenicity of tissue engineered bioprinted constructs. BMP-2 loaded on gelatin microparticles (GMPs) was used as a sustained release system, which was dispersed in hydrogel-based constructs and compared to direct inclusion of BMP-2 in alginate or control GMPs. The constructs were supplemented with goat multipotent stromal cells (gMSCs) and biphasic calcium phosphate to study osteogenic differentiation and bone formation respectively. BMP-2 release kinetics and bioactivity showed continuous release for three weeks coinciding with osteogenicity. Osteogenic differentiation and bone formation of bioprinted GMP containing constructs were investigated after subcutaneous implantation in mice or rats. BMP-2 significantly increased bone formation, which was not influenced by the release timing. We showed that 3D printing of controlled release particles is feasible and that the released BMP-2 directs osteogenic differentiation in vitro and in vivo.

167 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The local release of bone stimulating or resorptive drugs in the peri-implant region may also respond to difficult clinical situations with poor bone quality and quantity, which should ultimately enhance the osseointegration process of dental implants for their immediate loading and long-term success.

2,147 citations

Journal ArticleDOI
TL;DR: In this article, a review of recent developments in the use of ZnO nanostructures for dye-sensitized solar cell (DSC) applications is presented.
Abstract: This Review focuses on recent developments in the use of ZnO nanostructures for dye-sensitized solar cell (DSC) applications. It is shown that carefully designed and fabricated nanostructured ZnO films are advantageous for use as a DSC photoelectrode as they offer larger surface areas than bulk film material, direct electron pathways, or effective light-scattering centers, and, when combined with TiO2, produce a core–shell structure that reduces the combination rate. The limitations of ZnO-based DSCs are also discussed and several possible methods are proposed so as to expand the knowledge of ZnO to TiO2, motivating further improvement in the power-conversion efficiency of DSCs.

1,627 citations

Journal ArticleDOI
TL;DR: This review focuses on the deposition process, the parameters and demands of hydrogels in biofabrication, with special attention to robotic dispensing as an approach that generates constructs of clinically relevant dimensions.
Abstract: With advances in tissue engineering, the possibility of regenerating injured tissue or failing organs has become a realistic prospect for the first time in medical history. Tissue engineering - the combination of bioactive materials with cells to generate engineered constructs that functionally replace lost and/or damaged tissue - is a major strategy to achieve this goal. One facet of tissue engineering is biofabrication, where three-dimensional tissue-like structures composed of biomaterials and cells in a single manufacturing procedure are generated. Cell-laden hydrogels are commonly used in biofabrication and are termed "bioinks". Hydrogels are particularly attractive for biofabrication as they recapitulate several features of the natural extracellular matrix and allow cell encapsulation in a highly hydrated mechanically supportive three-dimensional environment. Additionally, they allow for efficient and homogeneous cell seeding, can provide biologically-relevant chemical and physical signals, and can be formed in various shapes and biomechanical characteristics. However, despite the progress made in modifying hydrogels for enhanced bioactivation, cell survival and tissue formation, little attention has so far been paid to optimize hydrogels for the physico-chemical demands of the biofabrication process. The resulting lack of hydrogel bioinks have been identified as one major hurdle for a more rapid progress of the field. In this review we summarize and focus on the deposition process, the parameters and demands of hydrogels in biofabrication, with special attention to robotic dispensing as an approach that generates constructs of clinically relevant dimensions. We aim to highlight this current lack of effectual hydrogels within biofabrication and initiate new ideas and developments in the design and tailoring of hydrogels. The successful development of a "printable" hydrogel that supports cell adhesion, migration, and differentiation will significantly advance this exciting and promising approach for tissue engineering.

1,468 citations

Journal ArticleDOI
TL;DR: A systematic nomenclature for this set of Graphene-Family Nanomaterials (GFNs) is proposed and specific materials properties relevant for biomolecular and cellular interactions are discussed and several unique modes of interaction between GFNs and nucleic acids, lipid bilayers, and conjugated small molecule drugs and dyes are discussed.
Abstract: Graphene is a single-atom thick, two-dimensional sheet of hexagonally arranged carbon atoms isolated from its three-dimensional parent material, graphite. Related materials include few-layer-graphene (FLG), ultrathin graphite, graphene oxide (GO), reduced graphene oxide (rGO), and graphene nanosheets (GNS). This review proposes a systematic nomenclature for this set of Graphene-Family Nanomaterials (GFNs) and discusses specific materials properties relevant for biomolecular and cellular interactions. We discuss several unique modes of interaction between GFNs and nucleic acids, lipid bilayers, and conjugated small molecule drugs and dyes. Some GFNs are produced as dry powders using thermal exfoliation, and in these cases, inhalation is a likely route of human exposure. Some GFNs have aerodynamic sizes that can lead to inhalation and substantial deposition in the human respiratory tract, which may impair lung defense and clearance leading to the formation of granulomas and lung fibrosis. The limited litera...

1,122 citations