scispace - formally typeset
Search or ask a question
Author

Sandra Carvalho

Bio: Sandra Carvalho is an academic researcher from University of Dundee. The author has contributed to research in topics: Leishmania infantum & Midgut. The author has an hindex of 4, co-authored 8 publications receiving 154 citations. Previous affiliations of Sandra Carvalho include Instituto de Biologia Molecular e Celular.

Papers
More filters
Journal ArticleDOI
TL;DR: Ex vivo infection assays suggest that wild-type levels of LiTXN1 are required for optimal L. infantum virulence, and confirm the essentiality of Li TXN1 throughout the life cycle of the parasite, namely in the disease-causing amastigote stage.

69 citations

Journal ArticleDOI
TL;DR: Evidence is presented that a ligand at the surface of amastigotes binds hemin with high-affinity (Kd=0.044nM) and may function in intracellular transport of heme while hemoglobin internalization occurs through a different molecule.

53 citations

Journal ArticleDOI
08 Sep 2010-PLOS ONE
TL;DR: The separation of trypanosomatid TXN sequences into two classes is proposed and supported by phylogenetic analysis: i) class I, encoding active TXNs, and ii) class II, coding for TA proteins unlikely to function as TXNs.
Abstract: Tryparedoxins (TXNs) are oxidoreductases unique to trypanosomatids (including Leishmania and Trypanosoma parasites) that transfer reducing equivalents from trypanothione, the major thiol in these organisms, to sulfur-dependent peroxidases and other dithiol proteins. The existence of a TXN within the mitochondrion of trypanosomatids, capable of driving crucial redox pathways, is considered a requisite for normal parasite metabolism. Here this concept is shown not to apply to Leishmania. First, removal of the Leishmania infantum mitochondrial TXN (LiTXN2) by gene-targeting, had no significant effect on parasite survival, even in the context of an animal infection. Second, evidence is presented that no other TXN is capable of replacing LiTXN2. In fact, although a candidate substitute for LiTXN2 (LiTXN3) was found in the genome of L. infantum, this was shown in biochemical assays to be poorly reduced by trypanothione and to be unable to reduce sulfur-containing peroxidases. Definitive conclusion that LiTXN3 cannot directly reduce proteins located within inner mitochondrial compartments was provided by analysis of its subcellular localization and membrane topology, which revealed that LiTXN3 is a tail-anchored (TA) mitochondrial outer membrane protein presenting, as characteristic of TA proteins, its N-terminal end (containing the redox-active domain) exposed to the cytosol. This manuscript further proposes the separation of trypanosomatid TXN sequences into two classes and this is supported by phylogenetic analysis: i) class I, encoding active TXNs, and ii) class II, coding for TA proteins unlikely to function as TXNs. Trypanosoma possess only two TXNs, one belonging to class I (which is cytosolic) and the other to class II. Thus, as demonstrated for Leishmania, the mitochondrial redox metabolism in Trypanosoma may also be independent of TXN activity. The major implication of these findings is that mitochondrial functions previously thought to depend on the provision of electrons by a TXN enzyme must proceed differently.

37 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe the development and optimization of this series, leading to the identification of compounds with potent in vitro and in vivo antileishmanial activity, including DNDI-6148, a preclinical candidate for the treatment of Visceral leishmaniasis.
Abstract: Visceral leishmaniasis (VL) is a parasitic disease endemic across multiple regions of the world and is fatal if untreated. Current therapies are unsuitable, and there is an urgent need for safe, short-course, and low-cost oral treatments to combat this neglected disease. The benzoxaborole chemotype has previously delivered clinical candidates for the treatment of other parasitic diseases. Here, we describe the development and optimization of this series, leading to the identification of compounds with potent in vitro and in vivo antileishmanial activity. The lead compound (DNDI-6148) combines impressive in vivo efficacy (>98% reduction in parasite burden) with pharmaceutical properties suitable for onward development and an acceptable safety profile. Detailed mode of action studies confirm that DNDI-6148 acts principally through the inhibition of Leishmania cleavage and polyadenylation specificity factor (CPSF3) endonuclease. As a result of these studies and its promising profile, DNDI-6148 has been declared a preclinical candidate for the treatment of VL.

18 citations

Journal ArticleDOI
TL;DR: Comprehensive genetic and biochemical studies are described to determine the targets of three unrelated phenotypically active compounds, identified as a promiscuous drug target in Leishmania donovani and Trypanosoma cruzi with a propensity to rapidly mutate.
Abstract: Available treatments for Chagas' disease and visceral leishmaniasis are inadequate, and there is a pressing need for new therapeutics. Drug discovery efforts for both diseases principally rely upon phenotypic screening. However, the optimization of phenotypically active compounds is hindered by a lack of information regarding their molecular target(s). To combat this issue we initiate target deconvolution studies at an early stage. Here, we describe comprehensive genetic and biochemical studies to determine the targets of three unrelated phenotypically active compounds. All three structurally diverse compounds target the Qi active-site of cytochrome b, part of the cytochrome bc1 complex of the electron transport chain. Our studies go on to identify the Qi site as a promiscuous drug target in Leishmania donovani and Trypanosoma cruzi with a propensity to rapidly mutate. Strategies to rapidly identify compounds acting via this mechanism are discussed to ensure that drug discovery portfolios are not overwhelmed with inhibitors of a single target.

15 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Recent evidence suggests that each host–pathogen combination evokes different solutions to the problems of parasite establishment, survival and persistence in Leishmania spp.
Abstract: Leishmania is a genus of protozoan parasites that are transmitted by the bite of phlebotomine sandflies and give rise to a range of diseases (collectively known as leishmaniases) that affect over 150 million people worldwide. Cellular immune mechanisms have a major role in the control of infections with all Leishmania spp. However, as discussed in this Review, recent evidence suggests that each host-pathogen combination evokes different solutions to the problems of parasite establishment, survival and persistence. Understanding the extent of this diversity will be increasingly important in ensuring the development of broadly applicable vaccines, drugs and immunotherapeutic interventions.

760 citations

Journal ArticleDOI
TL;DR: It is proposed that the set of interactions is better described as a means of stabilizing the anionic transition state of the reaction, and the enhanced acidity of the critical cysteine is concurrent but not the cause of catalytic efficiency.
Abstract: Protein thiol reactivity generally involves the nucleophilic attack of the thiolate on an electrophile. A low pKa means higher availability of the thiolate at neutral pH but often a lower nucleophilicity. Protein structural factors contribute to increasing the reactivity of the thiol in very specific reactions, but these factors do not provide an indiscriminate augmentation in general reactivity. Notably, reduction of hydroperoxides by the catalytic cysteine of peroxiredoxins can achieve extraordinary reaction rates relative to free cysteine. The discussion of this catalytic efficiency has centered in the stabilization of the thiolate as a way to increase nucleophilicity. Such stabilization originates from electrostatic and polar interactions of the catalytic cysteine with the protein environment. We propose that the set of interactions is better described as a means of stabilizing the anionic transition state of the reaction. The enhanced acidity of the critical cysteine is concurrent but not the cause o...

246 citations

Journal ArticleDOI
TL;DR: A recent study as mentioned in this paper showed that host antimicrobial mechanisms reduce iron availability to pathogens by reducing the availability of iron in the host's immune response to infection and the transferrin receptor.

220 citations

Journal ArticleDOI
TL;DR: E enzymes involved in spermidine synthesis and its utilization, i.e. ARG, ODC, AdoMetDC, SpdS and, in particular, TryS and TR, are promising targets for drug development.
Abstract: Polyamines (PAs) are essential metabolites in eukaryotes, participating in a variety of proliferative processes, and in trypanosomatid protozoa play an additional role in the synthesis of the critical thiol trypanothione. The PAs are synthesized by a metabolic process which involves arginase (ARG), which catalyzes the enzymatic hydrolysis of l-arginine (l-Arg) to l-ornithine and urea, and ornithine decarboxylase (ODC), which catalyzes the enzymatic decarboxylation of l-ornithine in putrescine. The S-adenosylmethionine decarboxylase (AdoMetDC) catalyzes the irreversible decarboxylation of S-adenosylmethionine (AdoMet), generating the decarboxylated S-adenosylmethionine (dAdoMet), which is a substrate, together with putrescine, for spermidine synthase (SpdS). Leishmania parasites and all the other members of the trypanosomatid family depend on spermidine for growth and survival. They can synthesize PAs and polyamine precursors, and also scavenge them from the microenvironment, using specific transporters. In addition, Trypanosomatids have a unique thiol-based metabolism, in which trypanothione (N1-N8-bis(glutathionyl)spermidine, T(SH)2) and trypanothione reductase (TR) replace many of the antioxidant and metabolic functions of the glutathione/glutathione reductase (GR) and thioredoxin/thioredoxin reductase (TrxR) systems present in the host. Trypanothione synthetase (TryS) and TR are necessary for the protozoa survival. Consequently, enzymes involved in spermidine synthesis and its utilization, i.e. ARG, ODC, AdoMetDC, SpdS and, in particular, TryS and TR, are promising targets for drug development.

136 citations

Journal ArticleDOI
TL;DR: The current understanding of different aspects of heme metabolism in parasitic eukaryotes is summarized, including the synthesis and uptake ofheme and its detoxification, and a differential need for heme in distinct parasitic groups are discussed.
Abstract: Heme and other tetrapyrroles, often called “the colors of life”, belong to the most important molecules of almost all extant organisms. They are synthesized by a common multistep pathway that is highly conserved throughout the tree of life [1]. One of the tetrapyrrole products is chlorophyll, the green pigment of plants and other phototrophs, which captures the energy of the sun. Vitamin B12, the most complex tetrapyrrole, is involved in DNA synthesis and energy metabolism [2]. The major product of tetrapyrrole biosynthesis in non-photosynthetic organisms is heme, an iron-coordinated porphyrin with the capacity to transfer electrons and bind diatomic gases. Here we summarize the current understanding of different aspects of heme metabolism in parasitic eukaryotes, including the synthesis and uptake of heme and its detoxification. A differential need for heme in distinct parasitic groups and the suitability of heme metabolism as a drug target for treating parasite-borne diseases are also discussed. First, however, let us review the functions of heme in various cellular processes.

98 citations