scispace - formally typeset
Search or ask a question
Author

Sandra Cescau

Bio: Sandra Cescau is an academic researcher from Pasteur Institute. The author has contributed to research in topics: Bartonella birtlesii & Bartonella. The author has an hindex of 3, co-authored 3 publications receiving 128 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that the laterally acquired Trw T4SS diversified in the Bartonella lineage to facilitate host-restricted adhesion to erythrocytes in a wide range of mammals.
Abstract: Bacterial pathogens typically infect only a limited range of hosts; however, the genetic mechanisms governing host-specificity are poorly understood. The alpha-proteobacterial genus Bartonella comprises 21 species that cause host-specific intraerythrocytic bacteremia as hallmark of infection in their respective mammalian reservoirs, including the human-specific pathogens Bartonella quintana and Bartonella bacilliformis that cause trench fever and Oroya fever, respectively. Here, we have identified bacterial factors that mediate host-specific erythrocyte colonization in the mammalian reservoirs. Using mouse-specific Bartonella birtlesii, human-specific Bartonella quintana, cat-specific Bartonella henselae and rat-specific Bartonella tribocorum, we established in vitro adhesion and invasion assays with isolated erythrocytes that fully reproduce the host-specificity of erythrocyte infection as observed in vivo. By signature-tagged mutagenesis of B. birtlesii and mutant selection in a mouse infection model we identified mutants impaired in establishing intraerythrocytic bacteremia. Among 45 abacteremic mutants, five failed to adhere to and invade mouse erythrocytes in vitro. The corresponding genes encode components of the type IV secretion system (T4SS) Trw, demonstrating that this virulence factor laterally acquired by the Bartonella lineage is directly involved in adherence to erythrocytes. Strikingly, ectopic expression of Trw of rat-specific B. tribocorum in cat-specific B. henselae or human-specific B. quintana expanded their host range for erythrocyte infection to rat, demonstrating that Trw mediates host-specific erythrocyte infection. A molecular evolutionary analysis of the trw locus further indicated that the variable, surface-located TrwL and TrwJ might represent the T4SS components that determine host-specificity of erythrocyte parasitism. In conclusion, we show that the laterally acquired Trw T4SS diversified in the Bartonella lineage to facilitate host-restricted adhesion to erythrocytes in a wide range of mammals.

107 citations

Journal ArticleDOI
TL;DR: Biochemical characterization showed that this protein exhibits oligo RNA degradation activity (nanoRNase activity) and, like Orn from E. coli, NrnC is inhibited by micromolar amounts of 3'-phosphoadenosine 5-phosphate in vitro.
Abstract: In Escherichia coli, only one essential oligoribonuclease (Orn) can degrade oligoribonucleotides of five residues and shorter in length (nanoRNA). In Bacillus subtilis, NrnA and NrnB, which do not show any sequence similarity to Orn, have been identified as functional analogues of Orn. Sequence comparisons did not identify orn, nrnA or nrnB homologues in the genomes of the Chlamydia/Cyanobacteria and Alphaproteobacteria family members. Screening a genomic library from Bartonella birtlesii, a member of the Alphaproteobacteria, for genes that can complement a conditional orn mutant. in E. coli, we identified BA0969 (NrnC) as a functional analogue of Orn. NrnC is highly conserved (more than 80% identity) in the Bartonella genomes sequenced to date. Biochemical characterization showed that this protein exhibits oligo RNA degradation activity (nanoRNase activity). Like Orn from E. coli, NrnC is inhibited by micromolar amounts of 3'-phosphoadenosine 5'-phosphate in vitro. NrnC homologues are widely present in genomes of Alphaproteobacteria. Knock down of nrnC decreases the growth ability of Bartonella henselae, demonstrating the importance of nanoRNase activity in this bacterium.

33 citations

Journal ArticleDOI
TL;DR: This work investigated the function of two components of a putative haem uptakesystem encoded in B. birtlesii and characterisation of Bartonellatribocorum hutA, tonB and exbB mutants as abac-teriaemic strains underlines the importance of the haem uptake process in Bart onellae.

3 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Recent advances in the knowledge of ‘paradigmatic’ and emerging systems are summarized and how new basic insights are aiding in the design of strategies aimed at suppressing T4SS functions in bacterial infections and spread of antimicrobial resistances is explored.
Abstract: Type IV secretion systems (T4SSs) are versatile multiprotein nanomachines spanning the entire cell envelope in Gram-negative and Gram-positive bacteria. They play important roles through the contact-dependent secretion of effector molecules into eukaryotic hosts and conjugative transfer of mobile DNA elements as well as contact-independent exchange of DNA with the extracellular milieu. In the last few years, many details on the molecular mechanisms of T4SSs have been elucidated. Exciting structures of T4SS complexes from Escherichia coli plasmids R388 and pKM101, Helicobacter pylori and Legionella pneumophila have been solved. The structure of the F-pilus was also reported and surprisingly revealed a filament composed of pilin subunits in 1:1 stoichiometry with phospholipid molecules. Many new T4SSs have been identified and characterized, underscoring the structural and functional diversity of this secretion superfamily. Complex regulatory circuits also have been shown to control T4SS machine production in response to host cell physiological status or a quorum of bacterial recipient cells in the vicinity. Here, we summarize recent advances in our knowledge of 'paradigmatic' and emerging systems, and further explore how new basic insights are aiding in the design of strategies aimed at suppressing T4SS functions in bacterial infections and spread of antimicrobial resistances.

239 citations

Journal ArticleDOI
TL;DR: Current knowledge on the molecular processes underlying both the infection strategy and pathogenesis of Bartonella are compiled and their connection to the clinical presentation of human patients is discussed, which ranges from minor complaints to life-threatening disease.
Abstract: Bartonella spp. are facultative intracellular pathogens that employ a unique stealth infection strategy comprising immune evasion and modulation, intimate interaction with nucleated cells, and intraerythrocytic persistence. Infections with Bartonella are ubiquitous among mammals, and many species can infect humans either as their natural host or incidentally as zoonotic pathogens. Upon inoculation into a naive host, the bartonellae first colonize a primary niche that is widely accepted to involve the manipulation of nucleated host cells, e.g., in the microvasculature. Consistently, in vitro research showed that Bartonella harbors an ample arsenal of virulence factors to modulate the response of such cells, gain entrance, and establish an intracellular niche. Subsequently, the bacteria are seeded into the bloodstream where they invade erythrocytes and give rise to a typically asymptomatic intraerythrocytic bacteremia. While this course of infection is characteristic for natural hosts, zoonotic infections or the infection of immunocompromised patients may alter the path of Bartonella and result in considerable morbidity. In this review we compile current knowledge on the molecular processes underlying both the infection strategy and pathogenesis of Bartonella and discuss their connection to the clinical presentation of human patients, which ranges from minor complaints to life-threatening disease.

218 citations

Journal ArticleDOI
TL;DR: Bacteria are able to orchestrate widespread changes in mRNA lifetimes by modulating the concentration or specific activity of cellular ribonucleases or by unmasking the mRNA-degrading activity of Cellular toxins.
Abstract: mRNA degradation is an important mechanism for controlling gene expression in bacterial cells. This process involves the orderly action of a battery of cellular endonucleases and exonucleases, some universal and others present only in certain species. These ribonucleases function with the assistance of ancillary enzymes that covalently modify the 5′ or 3′ end of RNA or unwind base-paired regions. Triggered by initiating events at either the 5′ terminus or an internal site, mRNA decay occurs at diverse rates that are transcript specific and governed by RNA sequence and structure, translating ribosomes, and bound sRNAs or proteins. In response to environmental cues, bacteria are able to orchestrate widespread changes in mRNA lifetimes by modulating the concentration or specific activity of cellular ribonucleases or by unmasking the mRNA-degrading activity of cellular toxins.

192 citations

Journal ArticleDOI
TL;DR: This review will examine host specificity of bacterial pathogens with a focus on generalist and specialist serovars of Salmonella enterica.
Abstract: Most pathogens are able to infect multiple hosts but some are highly adapted to a single-host species. A detailed understanding of the basis of host specificity can provide important insights into molecular pathogenesis, the evolution of pathogenic microbes, and the potential for pathogens to cross the species barrier to infect new hosts. Comparative genomics and the development of humanized mouse models have provided important new tools with which to explore the basis of generalism and specialism. This review will examine host specificity of bacterial pathogens with a focus on generalist and specialist serovars of Salmonella enterica.

158 citations

Journal ArticleDOI
TL;DR: Type IV secretion occurs across a wide range of prokaryotic cell envelopes: Gram-negative, Gram-positive, cell wall-less bacteria and some archaea, and this diversity is reflected in the heterogeneity of components that constitute the secretion machines.
Abstract: Type IV secretion occurs across a wide range of prokaryotic cell envelopes: Gram-negative, Gram-positive, cell wall-less bacteria and some archaea. This diversity is reflected in the heterogeneity of components that constitute the secretion machines. Macromolecules are secreted in an ATP-dependent process using an envelope-spanning multi-protein channel. Similar to the type III systems, this apparatus extends beyond the cell surface as a pilus structure important for direct contact and penetration of the recipient cell surface. Type IV systems are remarkably versatile in that they mobilize a broad range of substrates, including single proteins, protein complexes, DNA and nucleoprotein complexes, across the cell envelope. These machines have broad clinical significance not only for delivering bacterial toxins or effector proteins directly into targeted host cells, but also for direct involvement in phenomena such as biofilm formation and the rapid horizontal spread of antibiotic resistance genes among the microbial community.

154 citations