scispace - formally typeset
Search or ask a question
Author

Sandra E. Abell

Bio: Sandra E. Abell is an academic researcher from James Cook University. The author has contributed to research in topics: Bettong & Population. The author has an hindex of 8, co-authored 11 publications receiving 2019 citations.

Papers
More filters
Journal ArticleDOI
28 Nov 2014-Science
TL;DR: Diversity of most fungal groups peaked in tropical ecosystems, but ectomycorrhizal fungi and several fungal classes were most diverse in temperate or boreal ecosystems, and manyfungal groups exhibited distinct preferences for specific edaphic conditions (such as pH, calcium, or phosphorus).
Abstract: Fungi play major roles in ecosystem processes, but the determinants of fungal diversity and biogeographic patterns remain poorly understood. Using DNA metabarcoding data from hundreds of globally distributed soil samples, we demonstrate that fungal richness is decoupled from plant diversity. The plant-to-fungus richness ratio declines exponentially toward the poles. Climatic factors, followed by edaphic and spatial variables, constitute the best predictors of fungal richness and community composition at the global scale. Fungi show similar latitudinal diversity gradients to other organisms, with several notable exceptions. These findings advance our understanding of global fungal diversity patterns and permit integration of fungi into a general macroecological framework.

2,346 citations

Journal ArticleDOI
Pedro W. Crous1, Pedro W. Crous2, Michael J. Wingfield1, Treena I. Burgess3, G.E.St.J. Hardy3, C. E. Crane, Sarah Barrett, José F. Cano-Lira4, Johannes J. Le Roux5, Raja Thangavel6, Josep Guarro4, Alberto M. Stchigel4, María P. Martín7, Donis S. Alfredo8, Paul A. Barber, Robert W. Barreto9, Iuri Goulart Baseia8, Julia Cano-Canals, Ratchadawan Cheewangkoon10, Renato Juciano Ferreira11, Josepa Gené4, Christian Lechat, Gabriel Moreno12, Francois Roets5, Roger G. Shivas, Julieth O. Sousa8, Yu Pei Tan, Nathan P. Wiederhold13, Sandra E. Abell14, Thiago Accioly8, José Luis Albizu, Janaina L. Alves9, Zaida Inês Antoniolli15, Nick Aplin, João P.M. Araújo16, Mahdi Arzanlou17, Jadson D. P. Bezerra11, Jean-Philippe Bouchara18, J. R. Carlavilla12, A. Castillo12, Vanina Lilián Castroagudín19, Paulo Cezar Ceresini19, Gordon F. Claridge, Gilberto Coelho15, Victor R. M. Coimbra, L. A. Costa20, Keith C. da Cunha21, Silvana Santos da Silva20, Rosalie Daniel, Z. Wilhelm de Beer1, Margarita Dueñas7, Jacqueline Edwards22, P. Enwistle, Patrícia Oliveira Fiuza20, Jacques Fournier, Dania García4, Tatiana Baptista Gibertoni, Sandrine Giraud18, Marcela Guevara-Suarez4, Luís Fernando Pascholati Gusmão20, Sukanya Haituk10, Michel Heykoop12, Yuuri Hirooka23, Tina A. Hofmann24, Jos Houbraken2, David P. Hughes16, Ivona Kautmanová25, Olga Koppel26, Ondřej Koukol27, Ellen Larsson28, K. P. Deepna Latha29, Dong-Hyeon Lee1, Daniela O. Lisboa9, W. S. Lisboa9, Ángela López-Villalba12, João Leodato Nunes Maciel30, Patinjareveettil Manimohan29, José Luis Manjón12, Seonju Marincowitz1, Thomas S. Marney, M. Meijer2, Andrew N. Miller31, Ibai Olariaga32, Laura M. Paiva11, Meike Piepenbring33, Juan Carlos Poveda-Molero, K. N. Anil Raj29, Huzefa A. Raja34, Amandine Rougeron18, Isabel Salcedo32, Rosita Samadi17, Tiago Santos20, Kelly Scarlett35, Keith A. Seifert26, Lucas A. Shuttleworth, Gladstone Alves da Silva11, Meiriele da Silva9, João Paulo Zen Siqueira4, Cristina Maria de Souza-Motta11, Steven L. Stephenson36, Deanna A. Sutton13, Nisachon Tamakeaw10, M. Teresa Telleria7, N. Valenzuela-Lopez4, Altus Viljoen5, Cobus M. Visagie26, Alfredo Vizzini37, Felipe Wartchow38, Brenda D. Wingfield1, Eugene Yurchenko, Juan Carlos Zamora39, Johannes Z. Groenewald2 
TL;DR: Novel species of fungi described in this study include those from various countries as follows: Apiognomonia lasiopetali on Lasiopetalum sp.
Abstract: Novel species of fungi described in this study include those from various countries as follows: Australia: Apiognomonia lasiopetali on Lasiopetalum sp., Blastacervulus eucalyptorum on Eucalyptus adesmophloia, Bullanockia australis (incl. Bullanockia gen. nov.) on Kingia australis, Caliciopsis eucalypti on Eucalyptus marginata, Celerioriella petrophiles on Petrophile teretifolia, Coleophoma xanthosiae on Xanthosia rotundifolia, Coniothyrium hakeae on Hakea sp., Diatrypella banksiae on Banksia formosa, Disculoides corymbiae on Corymbia calophylla, Elsinoe eelemani on Melaleuca alternifolia, Elsinoe eucalyptigena on Eucalyptus kingsmillii, Elsinoe preissianae on Eucalyptus preissiana, Eucasphaeria rustici on Eucalyptus creta, Hyweljonesia queenslandica (incl. Hyweljonesia gen. nov.) on the cocoon of an unidentified microlepidoptera, Mycodiella eucalypti (incl. Mycodiella gen. nov.) on Eucalyptus diversicolor, Myrtapenidiella sporadicae on Eucalyptus sporadica, Neocrinula xanthorrhoeae (incl. Neocrinula gen. nov.) on Xanthorrhoea sp., Ophiocordyceps nooreniae on dead ant, Phaeosphaeriopsis agavacearum on Agave sp., Phlogicylindrium mokarei on Eucalyptus sp., Phyllosticta acaciigena on Acacia suaveolens, Pleurophoma acaciae on Acacia glaucoptera, Pyrenochaeta hakeae on Hakea sp., Readeriella lehmannii on Eucalyptus lehmannii, Saccharata banksiae on Banksia grandis, Saccharata daviesiae on Daviesia pachyphylla, Saccharata eucalyptorum on Eucalyptus bigalerita, Saccharata hakeae on Hakea baxteri, Saccharata hakeicola on Hakea victoria, Saccharata lambertiae on Lambertia ericifolia, Saccharata petrophiles on Petrophile sp., Saccharata petrophilicola on Petrophile fastigiata, Sphaerellopsis hakeae on Hakea sp., and Teichospora kingiae on Kingia australis. Brazil: Adautomilanezia caesalpiniae (incl. Adautomilanezia gen. nov.) on Caesalpina echinata, Arthrophiala arthrospora (incl. Arthrophiala gen. nov.) on Sagittaria montevidensis, Diaporthe caatingaensis (endophyte from Tacinga inamoena), Geastrum ishikawae on sandy soil, Geastrum pusillipilosum on soil, Gymnopus pygmaeus on dead leaves and sticks, Inonotus hymenonitens on decayed angiosperm trunk, Pyricularia urashimae on Urochloa brizantha, and Synnemellisia aurantia on Passiflora edulis. Chile: Tubulicrinis australis on Lophosoria quadripinnata. France: Cercophora squamulosa from submerged wood, and Scedosporium cereisporum from fluids of a wastewater treatment plant. Hawaii: Beltraniella acaciae, Dactylaria acaciae, Rhexodenticula acaciae, Rubikia evansii and Torula acaciae (all on Acacia koa). India: Lepidoderma echinosporum on dead semi-woody stems, and Rhodocybe rubrobrunnea from soil. Iran: Talaromyces kabodanensis from hypersaline soil. La Reunion: Neocordana musarum from leaves of Musa sp. Malaysia: Anungitea eucalyptigena on Eucalyptus grandis × pellita, Camptomeriphila leucaenae (incl. Camptomeriphila gen. nov.) on Leucaena leucocephala, Castanediella communis on Eucalyptus pellita, Eucalyptostroma eucalypti (incl. Eucalyptostroma gen. nov.) on Eucalyptus pellita, Melanconiella syzygii on Syzygium sp., Mycophilomyces periconiae (incl. Mycophilomyces gen. nov.) as hyperparasite on Periconia on leaves of Albizia falcataria, Synnemadiella eucalypti (incl. Synnemadiella gen. nov.) on Eucalyptus pellita, and Teichospora nephelii on Nephelium lappaceum. Mexico: Aspergillus bicephalus from soil. New Zealand: Aplosporella sophorae on Sophora microphylla, Libertasomyces platani on Platanus sp., Neothyronectria sophorae (incl. Neothyronectria gen. nov.) on Sophora microphylla, Parastagonospora phoenicicola on Phoenix canariensis, Phaeoacremonium pseudopanacis on Pseudopanax crassifolius, Phlyctema phoenicis on Phoenix canariensis, and Pseudoascochyta novae-zelandiae on Cordyline australis. Panama: Chalara panamensis from needle litter of Pinus cf. caribaea. South Africa: Exophiala eucalypti on leaves of Eucalyptus sp., Fantasmomyces hyalinus (incl. Fantasmomyces gen. nov.) on Acacia exuvialis, Paracladophialophora carceris (incl. Paracladophialophora gen. nov.) on Aloe sp., and Umthunziomyces hagahagensis (incl. Umthunziomyces gen. nov.) on Mimusops caffra. Spain: Clavaria griseobrunnea on bare ground in Pteridium aquilinum field, Cyathus ibericus on small fallen branches of Pinus halepensis, Gyroporus pseudolacteus in humus of Pinus pinaster, and Pseudoascochyta pratensis (incl. Pseudoascochyta gen. nov.) from soil. Thailand: Neoascochyta adenii on Adenium obesum, and Ochroconis capsici on Capsicum annuum. UK: Fusicolla melogrammae from dead stromata of Melogramma campylosporum on bark of Carpinus betulus. Uruguay: Myrmecridium pulvericola from house dust. USA: Neoscolecobasidium agapanthi (incl. Neoscolecobasidium gen. nov.) on Agapanthus sp., Polyscytalum purgamentum on leaf litter, Pseudopithomyces diversisporus from human toenail, Saksenaea trapezispora from knee wound of a soldier, and Sirococcus quercus from Quercus sp. Morphological and culture characteristics along with DNA barcodes are provided.

199 citations

Journal ArticleDOI
TL;DR: The meta-analysis confirms that mammals with fungal specialist diets contribute disproportionally more to the potential dispersal of fungi than other mammals within Australia, and highlights the significance of mammals, particularly fungal specialists, for maintaining diverse ectomycorrhizal fungal communities.

37 citations

Journal ArticleDOI
TL;DR: It is argued that disease has the potential to cause many species declines and extinctions and that there is mounting evidence that this is a more important cause of declines than has been appreciated.

34 citations

Journal ArticleDOI
TL;DR: A relationship was found between precipitation and fungal availability, with the abundance of hypogeous fungi being significantly lower in the late dry season and the importance of cockatoo grass as an alternative food resource during annual and extended dry periods has been underestimated.

33 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Fungi typically live in highly diverse communities composed of multiple ecological guilds, and FUNGuild is a tool that can be used to taxonomically parse fungal OTUs by ecological guild independent of sequencing platform or analysis pipeline.

2,290 citations

Journal ArticleDOI
TL;DR: Although most soil microorganisms remain undescribed, the field is now poised to identify how to manipulate and manage the soil microbiome to increase soil fertility, improve crop production and improve the understanding of how terrestrial ecosystems will respond to environmental change.
Abstract: Soil microorganisms are clearly a key component of both natural and managed ecosystems. Despite the challenges of surviving in soil, a gram of soil can contain thousands of individual microbial taxa, including viruses and members of all three domains of life. Recent advances in marker gene, genomic and metagenomic analyses have greatly expanded our ability to characterize the soil microbiome and identify the factors that shape soil microbial communities across space and time. However, although most soil microorganisms remain undescribed, we can begin to categorize soil microorganisms on the basis of their ecological strategies. This is an approach that should prove fruitful for leveraging genomic information to predict the functional attributes of individual taxa. The field is now poised to identify how we can manipulate and manage the soil microbiome to increase soil fertility, improve crop production and improve our understanding of how terrestrial ecosystems will respond to environmental change.

1,720 citations

Journal ArticleDOI
TL;DR: Large-scale molecular surveys have provided novel insights into the diversity, spatial and temporal dynamics of mycorrhizal fungal communities, and network theory makes it possible to analyze interactions between plant-fungal partners as complex underground multi-species networks.
Abstract: Almost all land plants form symbiotic associations with mycorrhizal fungi. These below-ground fungi play a key role in terrestrial ecosystems as they regulate nutrient and carbon cycles, and influence soil structure and ecosystem multifunctionality. Up to 80% of plant N and P is provided by mycorrhizal fungi and many plant species depend on these symbionts for growth and survival. Estimates suggest that there are c. 50 000 fungal species that form mycorrhizal associations with c. 250 000 plant species. The development of high-throughput molecular tools has helped us to better understand the biology, evolution, and biodiversity of mycorrhizal associations. Nuclear genome assemblies and gene annotations of 33 mycorrhizal fungal species are now available providing fascinating opportunities to deepen our understanding of the mycorrhizal lifestyle, the metabolic capabilities of these plant symbionts, the molecular dialogue between symbionts, and evolutionary adaptations across a range of mycorrhizal associations. Large-scale molecular surveys have provided novel insights into the diversity, spatial and temporal dynamics of mycorrhizal fungal communities. At the ecological level, network theory makes it possible to analyze interactions between plant-fungal partners as complex underground multi-species networks. Our analysis suggests that nestedness, modularity and specificity of mycorrhizal networks vary and depend on mycorrhizal type. Mechanistic models explaining partner choice, resource exchange, and coevolution in mycorrhizal associations have been developed and are being tested. This review ends with major frontiers for further research.

1,223 citations

Journal ArticleDOI
TL;DR: The findings provide empirical evidence that any loss in microbial diversity will likely reduce multifunctionality, negatively impacting the provision of services such as climate regulation, soil fertility and food and fibre production by terrestrial ecosystems.
Abstract: Despite the importance of microbial communities for ecosystem services and human welfare, the relationship between microbial diversity and multiple ecosystem functions and services (that is, multifunctionality) at the global scale has yet to be evaluated. Here we use two independent, large-scale databases with contrasting geographic coverage (from 78 global drylands and from 179 locations across Scotland, respectively), and report that soil microbial diversity positively relates to multifunctionality in terrestrial ecosystems. The direct positive effects of microbial diversity were maintained even when accounting simultaneously for multiple multifunctionality drivers (climate, soil abiotic factors and spatial predictors). Our findings provide empirical evidence that any loss in microbial diversity will likely reduce multifunctionality, negatively impacting the provision of services such as climate regulation, soil fertility and food and fibre production by terrestrial ecosystems.

1,119 citations

Journal ArticleDOI
09 Aug 2018-Nature
TL;DR: It is shown that bacterial, but not fungal, genetic diversity is highest in temperate habitats and that microbial gene composition varies more strongly with environmental variables than with geographic distance, and that the relative contributions of these microorganisms to global nutrient cycling varies spatially.
Abstract: Soils harbour some of the most diverse microbiomes on Earth and are essential for both nutrient cycling and carbon storage. To understand soil functioning, it is necessary to model the global distribution patterns and functional gene repertoires of soil microorganisms, as well as the biotic and environmental associations between the diversity and structure of both bacterial and fungal soil communities1–4. Here we show, by leveraging metagenomics and metabarcoding of global topsoil samples (189 sites, 7,560 subsamples), that bacterial, but not fungal, genetic diversity is highest in temperate habitats and that microbial gene composition varies more strongly with environmental variables than with geographic distance. We demonstrate that fungi and bacteria show global niche differentiation that is associated with contrasting diversity responses to precipitation and soil pH. Furthermore, we provide evidence for strong bacterial–fungal antagonism, inferred from antibiotic-resistance genes, in topsoil and ocean habitats, indicating the substantial role of biotic interactions in shaping microbial communities. Our results suggest that both competition and environmental filtering affect the abundance, composition and encoded gene functions of bacterial and fungal communities, indicating that the relative contributions of these microorganisms to global nutrient cycling varies spatially.

1,108 citations