scispace - formally typeset
Search or ask a question
Author

Sandra E. Yuter

Bio: Sandra E. Yuter is an academic researcher from North Carolina State University. The author has contributed to research in topics: Precipitation & Marine stratocumulus. The author has an hindex of 37, co-authored 92 publications receiving 5618 citations. Previous affiliations of Sandra E. Yuter include University of Washington & University of North Carolina at Chapel Hill.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, three algorithms extract information on precipitation type, structure, and amount from operational radar and rain gauge data, and statistically summarize the vertical structure of the radar echoes, and determine precipitation rates and amounts on high spatial resolution.
Abstract: Three algorithms extract information on precipitation type, structure, and amount from operational radar and rain gauge data. Tests on one month of data from one site show that the algorithms perform accurately and provide products that characterize the essential features of the precipitation climatology. Input to the algorithms are the operationally executed volume scans of a radar and the data from a surrounding rain gauge network. The algorithms separate the radar echoes into convective and stratiform regions, statistically summarize the vertical structure of the radar echoes, and determine precipitation rates and amounts on high spatial resolution. The convective and stratiform regions are separated on the basis of the intensity and sharpness of the peaks of echo intensity. The peaks indicate the centers of the convective region. Precipitation not identified as convective is stratiform. This method avoids the problem of underestimating the stratiform precipitation. The separation criteria are...

953 citations

Journal ArticleDOI
TL;DR: In this paper, high-resolution radar data collected in Florida during the Convection and Precipitation/Electrification Experiment are used to elucidate the microphysical and kinematic processes occurring during the transition of a multicellular storm from convective to stratiform stages.
Abstract: High-resolution radar data collected in Florida during the Convection and Precipitation/Electrification Experiment are used to elucidate the microphysical and kinematic processes occurring during the transition of a multicellular storm from convective to stratiform stages. A statistical technique is employed to examine the evolving properties of the ensemble small-scale variability of radar reflectivity, vertical velocity, and differential reflectivity over the entire storm. Differential radar reflectivity data indicate that the precipitation at upper levels was nearly glaciated early in the storm's lifetime. Dual-Doppler radar data show that throughout the storm's lifetime both updrafts and down-drafts were present at all altitudes and that most of the volume of the radar echo contained vertical velocities incapable of supporting precipitation-size particles. Thus, the ensemble microphysical properties of the storm were increasingly dominated by particles falling in an environment of weak vertic...

638 citations

Journal ArticleDOI
TL;DR: The East Pacific Investigation of Climate undertook an exploratory cruise from the Galapagos Islands to Chile in 2001, collecting an unprecedented dataset, integrating radiosonde, surface, cloud remote sensing, aerosol, and ocean measurements as mentioned in this paper.
Abstract: Overlaying the cool southeast Pacific Ocean is the most persistent subtropical stratocumulus cloud deck in the world. It produces a profound affect on tropical climate by shading the underlying ocean and radiatively cooling and stirring up turbulence in the atmosphere. In October 2001, the East Pacific Investigation of Climate undertook an exploratory cruise from the Galapagos Islands to Chile. The cruise gathered an unprecedented dataset, integrating radiosonde, surface, cloud remote sensing, aerosol, and ocean measurements. Scientific objectives included measuring the vertical structure of the ABL in this region, understanding what physical processes are determining the stra-tocumulus cloud albedo, and understanding the fluxes of heat and water that couple the atmosphere and ocean in this region. An unexpectedly well-mixed stratocumulus-capped boundary layer as a result of a strong inversion was encountered throughout. A strong diurnal cycle was observed, with thicker clouds and substantial dri...

320 citations

Journal ArticleDOI
TL;DR: The VAMOS(1) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) was an international field program designed to make observations of poorly understood but critical components of the coupled climate system of the southeast Pacific as discussed by the authors.
Abstract: The VAMOS(1) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) was an international field program designed to make observations of poorly understood but critical components of the coupled climate system of the southeast Pacific. This region is characterized by strong coastal upwelling, the coolest SSTs in the tropical belt, and is home to the largest subtropical stratocumulus deck on Earth. The field intensive phase of VOCALS-REx took place during October and November 2008 and constitutes a critical part of a broader CLIVAR program (VOCALS) designed to develop and promote scientific activities leading to improved understanding, model simulations, and predictions of the southeastern Pacific (SEP) coupled ocean-atmosphere-land system, on diurnal to interannual timescales. The other major components of VOCALS are a modeling program with a model hierarchy ranging from the local to global scales, and a suite of extended observations from regular research cruises, instrumented moorings, and satellites. The two central themes of VOCALS-REx focus upon (a) links between aerosols, clouds and precipitation and their impacts on marine stratocumulus radiative properties, and (b) physical and chemical couplings between the upper ocean and the lower atmosphere, including the role that mesoscale ocean eddies play. A set of hypotheses designed to be tested with the combined field, monitoring and modeling work in VOCALS is presented here. A further goal of VOCALS-REx is to provide datasets for the evaluation and improvement of large-scale numerical models. VOCALS-REx involved five research aircraft, two ships and two surface sites in northern Chile. We describe the instrument pay-loads and key mission strategies for these platforms and give a summary of the missions conducted.

280 citations

Journal ArticleDOI
TL;DR: In this article, the PARSIVEL measurements of rain and dry snow were used to distinguish rain and snow particles using a classification method based on their size and fall speed properties.
Abstract: Ground-based measurements of particle size and fall speed distributions using a Particle Size and Velocity (PARSIVEL) disdrometer are compa red among samples obtained in mixed precipitation (rain and wet snow) and rain in the Oregon Cascade Mountains and in dry snow in the Rock y Mountains of Colorado. Coexisting rain and snow particles are distinguished using a classification method based on their size and fall sp eed properties. The bimodal distribution of the particles' joint fall speed-size characteristics at air temperatures from 0.5 to 0 C suggests that wet-snow particles quickly make a transition to rain once mel ting has progressed sufficiently. As air temperatures increase to 1.5 C, the reduction in the number of very large aggregates with a diame ter > 10 mm coincides with the appearance of rain particles larger than 6 mm. In this setting. very large raindrops appear to be the result of aggregates melting with minimal breakup rather than formation by c oalescence. In contrast to dry snow and rain, the fall speed for wet snow has a much weaker correlation between increasing size and increasing fall speed. Wet snow has a larger standard deviation of fall spee d (120%-230% relative to dry snow) for a given particle size. The ave rage fall speed for observed wet-snow particles with a diameter great er than or equal to 2.4 mm is 2 m/s with a standard deviation of 0.8 m/s. The large standard deviation is likely related to the coexistence of particles of similar physical size with different percentages of melting. These results suggest that different particle sizes are not required for aggregation since wet-snow particles of the same size can have different fall speeds. Given the large standard deviation of fa ll speeds in wet snow, the collision efficiency for wet snow is likely larger than that of dry snow. For particle sizes between 1 and 10 mm in diameter within mixed precipitation, rain constituted I % of the particles by volume within the isothermal layer at 0 C and 4% of the particles by volume for the region just below the isothermal layer where air temperatures rise from 0" to 0.5"C. As air temperatures increa sed above 0.5 C, the relative proportions of rain versus snow particl es shift dramatically and raindrops become dominant. The value of 0.5 C for the sharp transition in volume fraction from snow to rain is sl ightly lower than the range from 1 .l to 1.7 C often used in hydrolog ical models.

233 citations


Cited by
More filters
01 Jan 1989
TL;DR: In this article, a two-dimensional version of the Pennsylvania State University mesoscale model has been applied to Winter Monsoon Experiment data in order to simulate the diurnally occurring convection observed over the South China Sea.
Abstract: Abstract A two-dimensional version of the Pennsylvania State University mesoscale model has been applied to Winter Monsoon Experiment data in order to simulate the diurnally occurring convection observed over the South China Sea. The domain includes a representation of part of Borneo as well as the sea so that the model can simulate the initiation of convection. Also included in the model are parameterizations of mesoscale ice phase and moisture processes and longwave and shortwave radiation with a diurnal cycle. This allows use of the model to test the relative importance of various heating mechanisms to the stratiform cloud deck, which typically occupies several hundred kilometers of the domain. Frank and Cohen's cumulus parameterization scheme is employed to represent vital unresolved vertical transports in the convective area. The major conclusions are: Ice phase processes are important in determining the level of maximum large-scale heating and vertical motion because there is a strong anvil componen...

3,813 citations

Journal ArticleDOI
TL;DR: The Madden-Julian Oscillation (MJO) is the dominant component of the intraseasonal (30-90 days) variability in the tropical atmosphere as mentioned in this paper, which consists of large-scale coupled patterns in atmospheric circulation and deep convection with coherent signals in many other variables, all propagating eastward slowly through the portion of the Indian and Pacific oceans where the sea surface is warm.
Abstract: [1] The Madden-Julian Oscillation (MJO) is the dominant component of the intraseasonal (30–90 days) variability in the tropical atmosphere. It consists of large-scale coupled patterns in atmospheric circulation and deep convection, with coherent signals in many other variables, all propagating eastward slowly (∼5 m s−1) through the portion of the Indian and Pacific oceans where the sea surface is warm. It constantly interacts with the underlying ocean and influences many weather and climate systems. The past decade has witnessed an expeditious progress in the study of the MJO: Its large-scale and multiscale structures are better described, its scale interaction is recognized, its broad influences on tropical and extratropical weather and climate are increasingly appreciated, and its mechanisms for disturbing the ocean are further comprehended. Yet we are facing great difficulties in accurately simulating and predicting the MJO using sophisticated global weather forecast and climate models, and we are unable to explain such difficulties based on existing theories of the MJO. It is fair to say that the MJO remains an unmet challenge to our understanding of the tropical atmosphere and to our ability to simulate and predict its variability. This review, motivated by both the acceleration and gaps in our knowledge of the MJO, intends to synthesize what we currently know and what we do not know on selected topics: its observed basic characteristics, mechanisms, numerical modeling, air-sea interaction, and influences on the El Nino and Southern Oscillation.

1,931 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented the CHELSA (Climatologies at high resolution for the earth's land surface areas) data of downscaled model output temperature and precipitation estimates of the ERA-Interim climatic reanalysis to a high resolution of 30'arc'sec.
Abstract: High-resolution information on climatic conditions is essential to many applications in environmental and ecological sciences. Here we present the CHELSA (Climatologies at high resolution for the earth’s land surface areas) data of downscaled model output temperature and precipitation estimates of the ERA-Interim climatic reanalysis to a high resolution of 30 arc sec. The temperature algorithm is based on statistical downscaling of atmospheric temperatures. The precipitation algorithm incorporates orographic predictors including wind fields, valley exposition, and boundary layer height, with a subsequent bias correction. The resulting data consist of a monthly temperature and precipitation climatology for the years 1979–2013. We compare the data derived from the CHELSA algorithm with other standard gridded products and station data from the Global Historical Climate Network. We compare the performance of the new climatologies in species distribution modelling and show that we can increase the accuracy of species range predictions. We further show that CHELSA climatological data has a similar accuracy as other products for temperature, but that its predictions of precipitation patterns are better. Machine-accessible metadata file describing the reported data (ISA-Tab format)

1,859 citations

Journal ArticleDOI
TL;DR: The Tropical Rainfall Measuring Mission (TRMM) was launched on 27 November 1997, and data from all the instruments first became available approximately 30 days after the launch as mentioned in this paper, and much progress has been made in the calibration of the sensors, the improvement of the rainfall algorithms, and applications of these results to areas such as data assimilation and model initialization.
Abstract: The Tropical Rainfall Measuring Mission (TRMM) satellite was launched on 27 November 1997, and data from all the instruments first became available approximately 30 days after the launch. Since then, much progress has been made in the calibration of the sensors, the improvement of the rainfall algorithms, and applications of these results to areas such as data assimilation and model initialization. The TRMM Microwave Imager (TMI) calibration has been corrected and verified to account for a small source of radiation leaking into the TMI receiver. The precipitation radar calibration has been adjusted upward slightly (by 0.6 dB Z) to match better the ground reference targets; the visible and infrared sensor calibration remains largely unchanged. Two versions of the TRMM rainfall algorithms are discussed. The at-launch (version 4) algorithms showed differences of 40% when averaged over the global Tropics over 30-day periods. The improvements to the rainfall algorithms that were undertaken after launch are presented, and intercomparisons of these products (version 5) show agreement improving to 24% for global tropical monthly averages. The ground-based radar rainfall product generation is discussed. Quality-control issues have delayed the routine production of these products until the summer of 2000, but comparisons of TRMM products with early versions of the ground validation products as well as with rain gauge network data suggest that uncertainties among the TRMM algorithms are of approximately the same magnitude as differences between TRMM products and ground-based rainfall estimates. The TRMM field experiment program is discussed to describe active areas of measurements and plans to use these data for further algorithm improvements. In addition to the many papers in this special issue, results coming from the analysis of TRMM products to study the diurnal cycle, the climatological description of the vertical profile of precipitation, storm types, and the distribution of shallow convection, as well as advances in data assimilation of moisture and model forecast improvements using TRMM data, are discussed in a companion TRMM special issue in the Journal of Climate (1 December 2000, Vol. 13, No. 23).

1,205 citations

Journal ArticleDOI
TL;DR: The largest convective clouds are mesoscale convective systems, which account for a large portion of Earth's cloud cover and precipitation, and the patterns of wind and weather associated with mesoscales are important local phenomena that often must be forecast on short timescales.
Abstract: The largest convective clouds are mesoscale convective systems, which account for a large portion of Earth's cloud cover and precipitation, and the patterns of wind and weather associated with mesoscale convective systems are important local phenomena that often must be forecast on short timescales. They often produce floods. Mesoscale convective systems are generally much larger than the individual cumulonimbus and lines of cumulonimbus discussed in Chapter 8 . They develop circulations on the mesoscale, which are larger in scale than the updrafts and downdrafts of individual cumulonimbus clouds. The mesoscale circulations produce large regions of stratiform (nimbostratus) precipitation of the type discussed in Chapter 6 . Often the stratiform precipitation regions trail a squall line consisting of convective cells, and a mesoscale convective vortex tends to form in the stratiform region. The heating profile in the stratiform region is positive at upper levels and negative at lower levels due to evaporation and melting of the precipitation particles. The dynamics of mesoscale circulations involve a joint adjustment to the wind shear and thermodynamic stratification of the large scale environment. Gravity-wave dynamics also contribute to the maintenance of mesoscale convective systems. This chapter reviews both the observed structure of mesoscale systems and their unique dynamics.

1,151 citations