scispace - formally typeset
Search or ask a question
Author

Sandra Gesing

Bio: Sandra Gesing is an academic researcher from University of Notre Dame. The author has contributed to research in topics: Workflow & Cloud computing. The author has an hindex of 15, co-authored 114 publications receiving 1713 citations. Previous affiliations of Sandra Gesing include University of Tübingen & University of Edinburgh.


Papers
More filters
Journal ArticleDOI
TL;DR: Improvements to the resource and the set of tools available for interrogating and accessing BRC data are described including the integration of Web Apollo to facilitate community annotation and providing Galaxy to support user-based workflows.
Abstract: VectorBase is a National Institute of Allergy and Infectious Diseases supported Bioinformatics Resource Center (BRC) for invertebrate vectors of human pathogens Now in its 11th year, VectorBase currently hosts the genomes of 35 organisms including a number of non-vectors for comparative analysis Hosted data range from genome assemblies with annotated gene features, transcript and protein expression data to population genetics including variation and insecticide-resistance phenotypes Here we describe improvements to our resource and the set of tools available for interrogating and accessing BRC data including the integration of Web Apollo to facilitate community annotation and providing Galaxy to support user-based workflows VectorBase also actively supports our community through hands-on workshops and online tutorials All information and data are freely available from our website at https://wwwvectorbaseorg/

538 citations

Journal ArticleDOI
TL;DR: GenomeMapper supports simultaneous mapping of short reads against multiple genomes by integrating related genomes into a single graph structure and introduces representations for alignments against complex structures.
Abstract: Genome resequencing with short reads generally relies on alignments against a single reference. GenomeMapper supports simultaneous mapping of short reads against multiple genomes by integrating related genomes (e.g., individuals of the same species) into a single graph structure. It constitutes the first approach for handling multiple references and introduces representations for alignments against complex structures. Demonstrated benefits include access to polymorphisms that cannot be identified by alignments against the reference alone. Download GenomeMapper at http://1001genomes.org.

289 citations

Journal ArticleDOI
TL;DR: A clear awareness of present high performance computing (HPC) solutions in bioinformatics, Big Data analysis paradigms for computational biology, and the issues that are still open in the biomedical and healthcare fields represent the starting point to win this challenge.
Abstract: The explosion of the data both in the biomedical research and in the healthcare systems demands urgent solutions. In particular, the research in omics sciences is moving from a hypothesis-driven to a data-driven approach. Healthcare is additionally always asking for a tighter integration with biomedical data in order to promote personalized medicine and to provide better treatments. Efficient analysis and interpretation of Big Data opens new avenues to explore molecular biology, new questions to ask about physiological and pathological states, and new ways to answer these open issues. Such analyses lead to better understanding of diseases and development of better and personalized diagnostics and therapeutics. However, such progresses are directly related to the availability of new solutions to deal with this huge amount of information. New paradigms are needed to store and access data, for its annotation and integration and finally for inferring knowledge and making it available to researchers. Bioinformatics can be viewed as the “glue” for all these processes. A clear awareness of present high performance computing (HPC) solutions in bioinformatics, Big Data analysis paradigms for computational biology, and the issues that are still open in the biomedical and healthcare fields represent the starting point to win this challenge.

150 citations

Journal ArticleDOI
TL;DR: This special issue and editorial celebrate 10 years of progress with data-intensive or scientific workflows with responses from a survey of major workflow systems, which provides evidence of substantial progress and a structured index of related papers.

100 citations

Journal ArticleDOI
TL;DR: The MoSGrid portal offers an approach to carry out high-quality molecular simulations on distributed compute infrastructures to scientists with all kinds of background and experience levels and the usage of well-defined workflows annotated with metadata largely improves the reproducibility of simulations.
Abstract: The MoSGrid portal offers an approach to carry out high-quality molecular simulations on distributed compute infrastructures to scientists with all kinds of background and experience levels. A user-friendly Web interface guarantees the ease-of-use of modern chemical simulation applications well established in the field. The usage of well-defined workflows annotated with metadata largely improves the reproducibility of simulations in the sense of good lab practice. The MoSGrid science gateway supports applications in the domains quantum chemistry (QC), molecular dynamics (MD), and docking. This paper presents the open-source MoSGrid architecture as well as lessons learned from its design.

68 citations


Cited by
More filters
Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

Journal ArticleDOI
Alex Bateman, Maria Jesus Martin, Sandra Orchard, Michele Magrane, Rahat Agivetova, Shadab Ahmad, Emanuele Alpi, Emily H Bowler-Barnett, Ramona Britto, Borisas Bursteinas, Hema Bye-A-Jee, Ray Coetzee, Austra Cukura, Alan Wilter Sousa da Silva, Paul Denny, Tunca Doğan, ThankGod Ebenezer, Jun Fan, Leyla Jael Garcia Castro, Penelope Garmiri, George Georghiou, Leonardo Gonzales, Emma Hatton-Ellis, Abdulrahman Hussein, Alexandr Ignatchenko, Giuseppe Insana, Rizwan Ishtiaq, Petteri Jokinen, Vishal Joshi, Dushyanth Jyothi, Antonia Lock, Rodrigo Lopez, Aurelien Luciani, Jie Luo, Yvonne Lussi, Alistair MacDougall, Fábio Madeira, Mahdi Mahmoudy, Manuela Menchi, Alok Mishra, Katie Moulang, Andrew Nightingale, Carla Susana Oliveira, Sangya Pundir, Guoying Qi, Shriya Raj, Daniel Rice, Milagros Rodriguez Lopez, Rabie Saidi, Joseph Sampson, Tony Sawford, Elena Speretta, Edward Turner, Nidhi Tyagi, Preethi Vasudev, Vladimir Volynkin, Kate Warner, Xavier Watkins, Rossana Zaru, Hermann Zellner, Alan Bridge, Sylvain Poux, Nicole Redaschi, Lucila Aimo, Ghislaine Argoud-Puy, Andrea H. Auchincloss, Kristian B. Axelsen, Parit Bansal, Delphine Baratin, Marie-Claude Blatter, Jerven Bolleman, Emmanuel Boutet, Lionel Breuza, Cristina Casals-Casas, Edouard de Castro, Kamal Chikh Echioukh, Elisabeth Coudert, Béatrice A. Cuche, M Doche, Dolnide Dornevil, Anne Estreicher, Maria Livia Famiglietti, Marc Feuermann, Elisabeth Gasteiger, Sebastien Gehant, Vivienne Baillie Gerritsen, Arnaud Gos, Nadine Gruaz-Gumowski, Ursula Hinz, Chantal Hulo, Nevila Hyka-Nouspikel, Florence Jungo, Guillaume Keller, Arnaud Kerhornou, Vicente Lara, Philippe Le Mercier, Damien Lieberherr, Thierry Lombardot, Xavier D. Martin, Patrick Masson, Anne Morgat, Teresa Batista Neto, Salvo Paesano, Ivo Pedruzzi, Sandrine Pilbout, Lucille Pourcel, Monica Pozzato, Manuela Pruess, Catherine Rivoire, Christian J. A. Sigrist, K Sonesson, Andre Stutz, Shyamala Sundaram, Michael Tognolli, Laure Verbregue, Cathy H. Wu, Cecilia N. Arighi, Leslie Arminski, Chuming Chen, Yongxing Chen, John S. Garavelli, Hongzhan Huang, Kati Laiho, Peter B. McGarvey, Darren A. Natale, Karen E. Ross, C. R. Vinayaka, Qinghua Wang, Yuqi Wang, Lai-Su L. Yeh, Jian Zhang, Patrick Ruch, Douglas Teodoro 
TL;DR: The UniProtKB responded to the COVID-19 pandemic through expert curation of relevant entries that were rapidly made available to the research community through a dedicated portal and a credit-based publication submission interface was developed.
Abstract: Abstract The aim of the UniProt Knowledgebase is to provide users with a comprehensive, high-quality and freely accessible set of protein sequences annotated with functional information. In this article, we describe significant updates that we have made over the last two years to the resource. The number of sequences in UniProtKB has risen to approximately 190 million, despite continued work to reduce sequence redundancy at the proteome level. We have adopted new methods of assessing proteome completeness and quality. We continue to extract detailed annotations from the literature to add to reviewed entries and supplement these in unreviewed entries with annotations provided by automated systems such as the newly implemented Association-Rule-Based Annotator (ARBA). We have developed a credit-based publication submission interface to allow the community to contribute publications and annotations to UniProt entries. We describe how UniProtKB responded to the COVID-19 pandemic through expert curation of relevant entries that were rapidly made available to the research community through a dedicated portal. UniProt resources are available under a CC-BY (4.0) license via the web at https://www.uniprot.org/.

4,001 citations

Journal ArticleDOI
Tian Tian1, Yue Liu1, Hengyu Yan1, Qi You1, Xin Yi1, Zhou Du1, Wenying Xu1, Zhen Su1 
TL;DR: The updated agriGO that has a largely expanded number of supporting species and datatypes and more visualization features were added to the platform, including SEACOMPARE, direct acyclic graph (DAG) and Scatter Plots, which can be merged by choosing any significant GO term.
Abstract: The agriGO platform, which has been serving the scientific community for >10 years, specifically focuses on gene ontology (GO) enrichment analyses of plant and agricultural species. We continuously maintain and update the databases and accommodate the various requests of our global users. Here, we present our updated agriGO that has a largely expanded number of supporting species (394) and datatypes (865). In addition, a larger number of species have been classified into groups covering crops, vegetables, fish, birds and insects closely related to the agricultural community. We further improved the computational efficiency, including the batch analysis and P-value distribution (PVD), and the user-friendliness of the web pages. More visualization features were added to the platform, including SEACOMPARE (cross comparison of singular enrichment analysis), direct acyclic graph (DAG) and Scatter Plots, which can be merged by choosing any significant GO term. The updated platform agriGO v2.0 is now publicly accessible at http://systemsbiology.cau.edu.cn/agriGOv2/.

1,490 citations

Journal ArticleDOI
01 Jun 2010-Genomics
TL;DR: This review summarizes and compares the published descriptions of packages named SSAKE, SHARCGS, VCAKE, Newbler, Celera Assembler, Euler, Velvet, ABySS, AllPaths, and SOAPdenovo to compare the two standard methods known as the de Bruijn graph approach and the overlap/layout/consensus approach to assembly.

1,176 citations