scispace - formally typeset
Search or ask a question
Author

Sandra K. Erickson

Bio: Sandra K. Erickson is an academic researcher from University of California, San Francisco. The author has contributed to research in topics: Cholesterol & Reverse cholesterol transport. The author has an hindex of 36, co-authored 77 publications receiving 5332 citations. Previous affiliations of Sandra K. Erickson include Veterans Health Administration & Stanford University.


Papers
More filters
Journal ArticleDOI
TL;DR: An expressed sequence tag clone that shared regions of similarity with acyl CoA:cholesterol acyltransferase, an enzyme that also uses fatty acyl coA as a substrate was identified, which will greatly facilitate studies of cellular glycerolipid metabolism and its regulation.
Abstract: Triacylglycerols are quantitatively the most important storage form of energy for eukaryotic cells Acyl CoA:diacylglycerol acyltransferase (DGAT, EC 23120) catalyzes the terminal and only committed step in triacylglycerol synthesis, by using diacylglycerol and fatty acyl CoA as substrates DGAT plays a fundamental role in the metabolism of cellular diacylglycerol and is important in higher eukaryotes for physiologic processes involving triacylglycerol metabolism such as intestinal fat absorption, lipoprotein assembly, adipose tissue formation, and lactation DGAT is an integral membrane protein that has never been purified to homogeneity, nor has its gene been cloned We identified an expressed sequence tag clone that shared regions of similarity with acyl CoA:cholesterol acyltransferase, an enzyme that also uses fatty acyl CoA as a substrate Expression of a mouse cDNA for this expressed sequence tag in insect cells resulted in high levels of DGAT activity in cell membranes No other acyltransferase activity was detected when a variety of substrates, including cholesterol, were used as acyl acceptors The gene was expressed in all tissues examined; during differentiation of NIH 3T3-L1 cells into adipocytes, its expression increased markedly in parallel with increases in DGAT activity The identification of this cDNA encoding a DGAT will greatly facilitate studies of cellular glycerolipid metabolism and its regulation

1,117 citations

Journal ArticleDOI
TL;DR: A new metabolic disorder presenting with hyperlipidemia caused by a homozygous deletion mutation in CYP7A1 is reported, which leads to a frameshift that results in loss of the active site and enzyme function.
Abstract: Bile acid synthesis plays a critical role in the maintenance of mammalian cholesterol homeostasis. The CYP7A1 gene encodes the enzyme cholesterol 7α-hydroxylase, which catalyzes the initial step in cholesterol catabolism and bile acid synthesis. We report here a new metabolic disorder presenting with hyperlipidemia caused by a homozygous deletion mutation in CYP7A1. The mutation leads to a frameshift (L413fsX414) that results in loss of the active site and enzyme function. High levels of LDL cholesterol were seen in three homozygous subjects. Analysis of a liver biopsy and stool from one of these subjects revealed double the normal hepatic cholesterol content, a markedly deficient rate of bile acid excretion, and evidence for upregulation of the alternative bile acid pathway. Two male subjects studied had hypertriglyceridemia and premature gallstone disease, and their LDL cholesterol levels were noticeably resistant to 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors. One subject also had premature coronary and peripheral vascular disease. Study of the kindred, which is of English and Celtic background, revealed that individuals heterozygous for the mutation are also hyperlipidemic, indicating that this is a codominant disorder.

510 citations

Journal ArticleDOI
TL;DR: A second mammalian ACAT enzyme is described, designated ACAT-2, that is 44% identical to the first cloned mouse ACAT (henceforth designated ACat-1) and will facilitate molecular approaches to understanding the role of ACAT enzymes in mammalian biology.

386 citations

Journal ArticleDOI
TL;DR: A mechanism through which insulin signaling regulates insulin sensitivity by modulating hepatic insulin clearance is suggested by suggesting that CEACAM1 phosphorylation leads to upregulation of receptor-mediated insulin endocytosis and degradation in the hepatocyte.
Abstract: We hypothesized that insulin stimulates phosphorylation of CEACAM1 which in turn leads to upregulation of receptor-mediated insulin endocytosis and degradation in the hepatocyte. We have generated transgenic mice over-expressing in liver a dominant-negative, phosphorylation-defective S503A-CEACAM1 mutant. Supporting our hypothesis, we found that S503A-CEACAM1 transgenic mice developed hyperinsulinemia resulting from impaired insulin clearance. The hyperinsulinemia caused secondary insulin resistance with impaired glucose tolerance and random, but not fasting, hyperglycemia. Transgenic mice developed visceral adiposity with increased amounts of plasma free fatty acids and plasma and hepatic triglycerides. These findings suggest a mechanism through which insulin signaling regulates insulin sensitivity by modulating hepatic insulin clearance.

250 citations

Journal ArticleDOI
TL;DR: It was shown that the cholesterol requirement is limited to the early and mid-G1 phases, whereas the isopentenyl effect is required at the late G1-S interphase of the cell cycle.

192 citations


Cited by
More filters
OtherDOI
TL;DR: Physical inactivity is a primary cause of most chronic diseases as discussed by the authors, and the body rapidly maladapts to insufficient physical activity, and if continued, results in substantial decreases in both total and quality years of life.
Abstract: Chronic diseases are major killers in the modern era. Physical inactivity is a primary cause of most chronic diseases. The initial third of the article considers: activity and prevention definitions; historical evidence showing physical inactivity is detrimental to health and normal organ functional capacities; cause vs. treatment; physical activity and inactivity mechanisms differ; gene-environment interaction [including aerobic training adaptations, personalized medicine, and co-twin physical activity]; and specificity of adaptations to type of training. Next, physical activity/exercise is examined as primary prevention against 35 chronic conditions [Accelerated biological aging/premature death, low cardiorespiratory fitness (VO2max), sarcopenia, metabolic syndrome, obesity, insulin resistance, prediabetes, type 2 diabetes, non-alcoholic fatty liver disease, coronary heart disease, peripheral artery disease, hypertension, stroke, congestive heart failure, endothelial dysfunction, arterial dyslipidemia, hemostasis, deep vein thrombosis, cognitive dysfunction, depression and anxiety, osteoporosis, osteoarthritis, balance, bone fracture/falls, rheumatoid arthritis, colon cancer, breast cancer, endometrial cancer, gestational diabetes, preeclampsia, polycystic ovary syndrome, erectile dysfunction, pain, diverticulitis, constipation, and gallbladder diseases]. The article ends with consideration of deterioration of risk factors in longer-term sedentary groups; clinical consequences of inactive childhood/adolescence; and public policy. In summary, the body rapidly maladapts to insufficient physical activity, and if continued, results in substantial decreases in both total and quality years of life. Taken together, conclusive evidence exists that physical inactivity is one important cause of most chronic diseases. In addition, physical activity primarily prevents, or delays, chronic diseases, implying that chronic disease need not be an inevitable outcome during life.

1,753 citations

Journal ArticleDOI
TL;DR: The synthesis and excretion of bile acids comprise the major pathway of cholesterol catabolism in mammals and causes a spectrum of human disease; this ranges from liver failure in early childhood to progressive neuropathy in adults.
Abstract: ▪ Abstract The synthesis and excretion of bile acids comprise the major pathway of cholesterol catabolism in mammals. Synthesis provides a direct means of converting cholesterol, which is both hydrophobic and insoluble, into a water-soluble and readily excreted molecule, the bile acid. The biosynthetic steps that accomplish this transformation also confer detergent properties to the bile acid, which are exploited by the body to facilitate the secretion of cholesterol from the liver. This role in the elimination of cholesterol is counterbalanced by the ability of bile acids to solubilize dietary cholesterol and essential nutrients and to promote their delivery to the liver. The synthesis of a full complement of bile acids requires 17 enzymes. The expression of selected enzymes in the pathway is tightly regulated by nuclear hormone receptors and other transcription factors, which ensure a constant supply of bile acids in an ever changing metabolic environment. Inherited mutations that impair bile acid synth...

1,686 citations

OtherDOI
TL;DR: The liver is an essential metabolic organ, and its metabolic function is controlled by insulin and other metabolic hormones, so controlling liver energy metabolism is tightly regulated by neuronal and hormonal signals.
Abstract: The liver is an essential metabolic organ, and its metabolic function is controlled by insulin and other metabolic hormones. Glucose is converted into pyruvate through glycolysis in the cytoplasm, and pyruvate is subsequently oxidized in the mitochondria to generate ATP through the TCA cycle and oxidative phosphorylation. In the fed state, glycolytic products are used to synthesize fatty acids through de novo lipogenesis. Long-chain fatty acids are incorporated into triacylglycerol, phospholipids, and/or cholesterol esters in hepatocytes. These complex lipids are stored in lipid droplets and membrane structures, or secreted into the circulation as very low-density lipoprotein particles. In the fasted state, the liver secretes glucose through both glycogenolysis and gluconeogenesis. During pronged fasting, hepatic gluconeogenesis is the primary source for endogenous glucose production. Fasting also promotes lipolysis in adipose tissue, resulting in release of nonesterified fatty acids which are converted into ketone bodies in hepatic mitochondria though β-oxidation and ketogenesis. Ketone bodies provide a metabolic fuel for extrahepatic tissues. Liver energy metabolism is tightly regulated by neuronal and hormonal signals. The sympathetic system stimulates, whereas the parasympathetic system suppresses, hepatic gluconeogenesis. Insulin stimulates glycolysis and lipogenesis but suppresses gluconeogenesis, and glucagon counteracts insulin action. Numerous transcription factors and coactivators, including CREB, FOXO1, ChREBP, SREBP, PGC-1α, and CRTC2, control the expression of the enzymes which catalyze key steps of metabolic pathways, thus controlling liver energy metabolism. Aberrant energy metabolism in the liver promotes insulin resistance, diabetes, and nonalcoholic fatty liver diseases.

1,444 citations

Journal ArticleDOI
29 May 1998-Cell
TL;DR: The existence of a physiologically significant feed-forward regulatory pathway for sterol metabolism and the role of LXR alpha as the major sensor of dietary cholesterol are established.

1,428 citations

Journal ArticleDOI
TL;DR: Results suggest that modulation of FXR activity and BA metabolism may open new attractive pharmacological approaches for the treatment of the metabolic syndrome and type 2 diabetes.
Abstract: The incidence of the metabolic syndrome has taken epidemic proportions in the past decades, contributing to an increased risk of cardiovascular disease and diabetes. The metabolic syndrome can be d...

1,376 citations