scispace - formally typeset
Search or ask a question
Author

Sandra M. Faber

Bio: Sandra M. Faber is an academic researcher from University of California, Santa Cruz. The author has contributed to research in topics: Galaxy & Elliptical galaxy. The author has an hindex of 107, co-authored 264 publications receiving 58887 citations. Previous affiliations of Sandra M. Faber include University of California, Berkeley.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors constructed dynamical models for a sample of 36 nearby galaxies with Hubble Space Telescope (HST) photometry and ground-based kinematics, assuming that each galaxy is axisymmetric, with a two-integral distribution function, arbitrary inclination angle, a position-independent stellar mass-to-light ratio, and a central massive dark object of arbitrary mass M•.
Abstract: We construct dynamical models for a sample of 36 nearby galaxies with Hubble Space Telescope (HST) photometry and ground-based kinematics. The models assume that each galaxy is axisymmetric, with a two-integral distribution function, arbitrary inclination angle, a position-independent stellar mass-to-light ratio , and a central massive dark object (MDO) of arbitrary mass M•. They provide acceptable fits to 32 of the galaxies for some value of M• and ; the four galaxies that cannot be fitted have kinematically decoupled cores. The mass-to-light ratios inferred for the 32 well-fitted galaxies are consistent with the fundamental-plane correlation ∝ L0.2, where L is galaxy luminosity. In all but six galaxies the models require at the 95% confidence level an MDO of mass M• ~ 0.006Mbulge ≡ 0.006L. Five of the six galaxies consistent with M• = 0 are also consistent with this correlation. The other (NGC 7332) has a much stronger upper limit on M•. We predict the second-moment profiles that should be observed at HST resolution for the 32 galaxies that our models describe well. We consider various parameterizations for the probability distribution describing the correlation of the masses of these MDOs with other galaxy properties. One of the best models can be summarized thus: a fraction f 0.97 of early-type galaxies have MDOs, whose masses are well described by a Gaussian distribution in log (M•/Mbulge) of mean -2.28 and standard deviation ~0.51. There is also marginal evidence that M• is distributed differently for core and power law galaxies, with core galaxies having a somewhat steeper dependence on Mbulge.

3,976 citations

Journal ArticleDOI
TL;DR: In this paper, a correlation between the mass Mbh of a galaxy's central black hole and the luminosity-weighted line-of-sight velocity dispersion σe within the half-light radius is described.
Abstract: We describe a correlation between the mass Mbh of a galaxy's central black hole and the luminosity-weighted line-of-sight velocity dispersion σe within the half-light radius. The result is based on a sample of 26 galaxies, including 13 galaxies with new determinations of black hole masses from Hubble Space Telescope measurements of stellar kinematics. The best-fit correlation is Mbh = 1.2(±0.2) × 108 M☉(σe/200 km s-1)3.75 (±0.3) over almost 3 orders of magnitude in Mbh; the scatter in Mbh at fixed σe is only 0.30 dex, and most of this is due to observational errors. The Mbh-σe relation is of interest not only for its strong predictive power but also because it implies that central black hole mass is constrained by and closely related to properties of the host galaxy's bulge.

3,901 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that the range of slopes arises mostly due of sys- tematic differences in the velocity dispersions used by different groups for the same galaxies, and that one significant component of the difference results from Ferrarese & Merritt's extrapolation of central velocity dispersion to re= 8( re is the effective radius) using an empirical formula.
Abstract: Observations of nearby galaxies reveal a strong correlation between the mass of the central dark object MBH and the velocity dispersionof the host galaxy, of the form logðMBH=M� Þ¼ � þ � logð�=� 0Þ; how- ever, published estimates of the slopespan a wide range (3.75-5.3). Merritt & Ferrarese have argued that low slopes (d4) arise because of neglect of random measurement errors in the dispersions and an incorrect choice for the dispersion of the Milky Way Galaxy. We show that these explanations and several others account for at most a small part of the slope range. Instead, the range of slopes arises mostly because of sys- tematic differences in the velocity dispersions used by different groups for the same galaxies. The origin of these differences remains unclear, but we suggest that one significant component of the difference results from Ferrarese & Merritt's extrapolation of central velocity dispersions to re= 8( re is the effective radius) using an empirical formula. Another component may arise from dispersion-dependent systematic errors in the mea- surements. A new determination of the slope using 31 galaxies yields � ¼ 4:02 � 0:32, � ¼ 8:13 � 0:06 for � 0 ¼ 200 km s � 1 . The MBH-� relation has an intrinsic dispersion in log MBH that is no larger than 0.25-0.3 dex and may be smaller if observational errors have been underestimated. In an appendix, we present a simple kinematic model for the velocity-dispersion profile of the Galactic bulge. Subject headings: black hole physics — galaxies: bulges — galaxies: fundamental parameters — galaxies: nuclei — Galaxy: bulge — Galaxy: kinematics and dynamics

2,742 citations

Journal ArticleDOI
Norman A. Grogin1, Dale D. Kocevski2, Sandra M. Faber2, Henry C. Ferguson1, Anton M. Koekemoer1, Adam G. Riess3, Viviana Acquaviva4, David M. Alexander5, Omar Almaini6, Matthew L. N. Ashby7, Marco Barden8, Eric F. Bell9, Frédéric Bournaud10, Thomas M. Brown1, Karina Caputi11, Stefano Casertano1, Paolo Cassata12, Marco Castellano, Peter Challis7, Ranga-Ram Chary13, Edmond Cheung2, Michele Cirasuolo14, Christopher J. Conselice6, Asantha Cooray15, Darren J. Croton16, Emanuele Daddi10, Tomas Dahlen1, Romeel Davé17, Duilia F. de Mello18, Duilia F. de Mello19, Avishai Dekel20, Mark Dickinson, Timothy Dolch3, Jennifer L. Donley1, James Dunlop11, Aaron A. Dutton21, David Elbaz10, Giovanni G. Fazio7, Alexei V. Filippenko22, Steven L. Finkelstein23, Adriano Fontana, Jonathan P. Gardner19, Peter M. Garnavich24, Eric Gawiser4, Mauro Giavalisco12, Andrea Grazian, Yicheng Guo12, Nimish P. Hathi25, Boris Häussler6, Philip F. Hopkins22, Jiasheng Huang26, Kuang-Han Huang3, Kuang-Han Huang1, Saurabh Jha4, Jeyhan S. Kartaltepe, Robert P. Kirshner7, David C. Koo2, Kamson Lai2, Kyoung-Soo Lee27, Weidong Li22, Jennifer M. Lotz1, Ray A. Lucas1, Piero Madau2, Patrick J. McCarthy25, Elizabeth J. McGrath2, Daniel H. McIntosh28, Ross J. McLure11, Bahram Mobasher29, Leonidas A. Moustakas13, Mark Mozena2, Kirpal Nandra30, Jeffrey A. Newman31, Sami Niemi1, Kai G. Noeske1, Casey Papovich23, Laura Pentericci, Alexandra Pope12, Joel R. Primack2, Abhijith Rajan1, Swara Ravindranath32, Naveen A. Reddy29, Alvio Renzini, Hans-Walter Rix30, Aday R. Robaina33, Steven A. Rodney3, David J. Rosario30, Piero Rosati34, S. Salimbeni12, Claudia Scarlata35, Brian Siana29, Luc Simard36, Joseph Smidt15, Rachel S. Somerville4, Hyron Spinrad22, Amber Straughn19, Louis-Gregory Strolger37, Olivia Telford31, Harry I. Teplitz13, Jonathan R. Trump2, Arjen van der Wel30, Carolin Villforth1, Risa H. Wechsler38, Benjamin J. Weiner17, Tommy Wiklind39, Vivienne Wild11, Grant W. Wilson12, Stijn Wuyts30, Hao Jing Yan40, Min S. Yun12 
TL;DR: The Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) as discussed by the authors was designed to document the first third of galactic evolution, from z approx. 8 - 1.5 to test their accuracy as standard candles for cosmology.
Abstract: The Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) is designed to document the first third of galactic evolution, from z approx. 8 - 1.5. It will image > 250,000 distant galaxies using three separate cameras on the Hubble Space Tele8cope, from the mid-UV to near-IR, and will find and measure Type Ia supernovae beyond z > 1.5 to test their accuracy as standard candles for cosmology. Five premier multi-wavelength sky regions are selected, each with extensive ancillary data. The use of five widely separated fields mitigates cosmic variance and yields statistically robust and complete samples of galaxies down to a stellar mass of 10(exp 9) solar mass to z approx. 2, reaching the knee of the UV luminosity function of galaxies to z approx. 8. The survey covers approximately 800 square arc minutes and is divided into two parts. The CANDELS/Deep survey (5(sigma) point-source limit H =27.7mag) covers approx. 125 square arcminutes within GOODS-N and GOODS-S. The CANDELS/Wide survey includes GOODS and three additional fields (EGS, COSMOS, and UDS) and covers the full area to a 50(sigma) point-source limit of H ? or approx. = 27.0 mag. Together with the Hubble Ultradeep Fields, the strategy creates a three-tiered "wedding cake" approach that has proven efficient for extragalactic surveys. Data from the survey are non-proprietary and are useful for a wide variety of science investigations. In this paper, we describe the basic motivations for the survey, the CANDELS team science goals and the resulting observational requirements, the field selection and geometry, and the observing design.

2,088 citations

Journal ArticleDOI
Anton M. Koekemoer1, Sandra M. Faber2, Henry C. Ferguson1, Norman A. Grogin1, Dale D. Kocevski2, David C. Koo2, Kamson Lai2, Jennifer M. Lotz1, Ray A. Lucas1, Elizabeth J. McGrath2, Sara Ogaz1, Abhijith Rajan1, Adam G. Riess3, S. Rodney3, L. G. Strolger4, Stefano Casertano1, Marco Castellano, Tomas Dahlen1, Mark Dickinson, Timothy Dolch3, Adriano Fontana, Mauro Giavalisco5, Andrea Grazian, Yicheng Guo5, Nimish P. Hathi6, Kuang-Han Huang3, Kuang-Han Huang1, Arjen van der Wel7, Hao Jing Yan8, Viviana Acquaviva9, David M. Alexander10, Omar Almaini11, Matthew L. N. Ashby12, Marco Barden13, Eric F. Bell14, Frédéric Bournaud15, Thomas M. Brown1, Karina Caputi16, Paolo Cassata5, Peter Challis17, Ranga-Ram Chary18, Edmond Cheung2, Michele Cirasuolo16, Christopher J. Conselice11, Asantha Cooray19, Darren J. Croton20, Emanuele Daddi15, Romeel Davé21, Duilia F. de Mello22, Loic de Ravel16, Avishai Dekel23, Jennifer L. Donley1, James Dunlop16, Aaron A. Dutton24, David Elbaz25, Giovanni Fazio12, Alexei V. Filippenko26, Steven L. Finkelstein27, Chris Frazer19, Jonathan P. Gardner22, Peter M. Garnavich28, Eric Gawiser9, Ruth Gruetzbauch11, Will G. Hartley11, B. Haussler11, Jessica Herrington14, Philip F. Hopkins26, J.-S. Huang29, Saurabh Jha9, Andrew Johnson2, Jeyhan S. Kartaltepe3, Ali Ahmad Khostovan19, Robert P. Kirshner12, Caterina Lani11, Kyoung-Soo Lee30, Weidong Li26, Piero Madau2, Patrick J. McCarthy6, Daniel H. McIntosh31, Ross J. McLure, Conor McPartland2, Bahram Mobasher32, Heidi Moreira9, Alice Mortlock11, Leonidas A. Moustakas18, Mark Mozena2, Kirpal Nandra33, Jeffrey A. Newman34, Jennifer L. Nielsen31, Sami Niemi1, Kai G. Noeske1, Casey Papovich27, Laura Pentericci, Alexandra Pope, Joel R. Primack2, Swara Ravindranath35, Naveen A. Reddy, Alvio Renzini, Hans Walter Rix7, Aday R. Robaina, David J. Rosario2, Piero Rosati7, S. Salimbeni5, Claudia Scarlata18, Brian Siana18, Luc Simard36, Joseph Smidt19, D. Snyder2, Rachel S. Somerville1, Hyron Spinrad26, Amber N. Straughn22, Olivia Telford34, Harry I. Teplitz18, Jonathan R. Trump2, Carlos J. Vargas9, Carolin Villforth1, C. Wagner31, P. Wandro2, Risa H. Wechsler37, Benjamin J. Weiner21, Tommy Wiklind1, Vivienne Wild, Grant W. Wilson5, Stijn Wuyts12, Min S. Yun5 
TL;DR: In this paper, the authors describe the Hubble Space Telescope imaging data products and data reduction procedures for the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS).
Abstract: This paper describes the Hubble Space Telescope imaging data products and data reduction procedures for the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). This survey is designed to document the evolution of galaxies and black holes at z 1.5-8, and to study Type Ia supernovae at z > 1.5. Five premier multi-wavelength sky regions are selected, each with extensive multi-wavelength observations. The primary CANDELS data consist of imaging obtained in the Wide Field Camera 3 infrared channel (WFC3/IR) and the WFC3 ultraviolet/optical channel, along with the Advanced Camera for Surveys (ACS). The CANDELS/Deep survey covers ~125 arcmin2 within GOODS-N and GOODS-S, while the remainder consists of the CANDELS/Wide survey, achieving a total of ~800 arcmin2 across GOODS and three additional fields (Extended Groth Strip, COSMOS, and Ultra-Deep Survey). We summarize the observational aspects of the survey as motivated by the scientific goals and present a detailed description of the data reduction procedures and products from the survey. Our data reduction methods utilize the most up-to-date calibration files and image combination procedures. We have paid special attention to correcting a range of instrumental effects, including charge transfer efficiency degradation for ACS, removal of electronic bias-striping present in ACS data after Servicing Mission 4, and persistence effects and other artifacts in WFC3/IR. For each field, we release mosaics for individual epochs and eventual mosaics containing data from all epochs combined, to facilitate photometric variability studies and the deepest possible photometry. A more detailed overview of the science goals and observational design of the survey are presented in a companion paper.

2,011 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a reprocessed composite of the COBE/DIRBE and IRAS/ISSA maps, with the zodiacal foreground and confirmed point sources removed, is presented.
Abstract: We present a full-sky 100 μm map that is a reprocessed composite of the COBE/DIRBE and IRAS/ISSA maps, with the zodiacal foreground and confirmed point sources removed. Before using the ISSA maps, we remove the remaining artifacts from the IRAS scan pattern. Using the DIRBE 100 and 240 μm data, we have constructed a map of the dust temperature so that the 100 μm map may be converted to a map proportional to dust column density. The dust temperature varies from 17 to 21 K, which is modest but does modify the estimate of the dust column by a factor of 5. The result of these manipulations is a map with DIRBE quality calibration and IRAS resolution. A wealth of filamentary detail is apparent on many different scales at all Galactic latitudes. In high-latitude regions, the dust map correlates well with maps of H I emission, but deviations are coherent in the sky and are especially conspicuous in regions of saturation of H I emission toward denser clouds and of formation of H2 in molecular clouds. In contrast, high-velocity H I clouds are deficient in dust emission, as expected. To generate the full-sky dust maps, we must first remove zodiacal light contamination, as well as a possible cosmic infrared background (CIB). This is done via a regression analysis of the 100 μm DIRBE map against the Leiden-Dwingeloo map of H I emission, with corrections for the zodiacal light via a suitable expansion of the DIRBE 25 μm flux. This procedure removes virtually all traces of the zodiacal foreground. For the 100 μm map no significant CIB is detected. At longer wavelengths, where the zodiacal contamination is weaker, we detect the CIB at surprisingly high flux levels of 32 ± 13 nW m-2 sr-1 at 140 μm and of 17 ± 4 nW m-2 sr-1 at 240 μm (95% confidence). This integrated flux ~2 times that extrapolated from optical galaxies in the Hubble Deep Field. The primary use of these maps is likely to be as a new estimator of Galactic extinction. To calibrate our maps, we assume a standard reddening law and use the colors of elliptical galaxies to measure the reddening per unit flux density of 100 μm emission. We find consistent calibration using the B-R color distribution of a sample of the 106 brightest cluster ellipticals, as well as a sample of 384 ellipticals with B-V and Mg line strength measurements. For the latter sample, we use the correlation of intrinsic B-V versus Mg2 index to tighten the power of the test greatly. We demonstrate that the new maps are twice as accurate as the older Burstein-Heiles reddening estimates in regions of low and moderate reddening. The maps are expected to be significantly more accurate in regions of high reddening. These dust maps will also be useful for estimating millimeter emission that contaminates cosmic microwave background radiation experiments and for estimating soft X-ray absorption. We describe how to access our maps readily for general use.

15,988 citations

Journal ArticleDOI
TL;DR: In this article, the spectral evolution of stellar populations at ages between 100,000 yr and 20 Gyr at a resolution of 3 A across the whole wavelength range from 3200 to 9500 A for a wide range of metallicities.
Abstract: We present a new model for computing the spectral evolution of stellar populations at ages between 100,000 yr and 20 Gyr at a resolution of 3 A across the whole wavelength range from 3200 to 9500 A for a wide range of metallicities. These predictions are based on a newly available library of observed stellar spectra. We also compute the spectral evolution across a larger wavelength range, from 91 A to 160 micron, at lower resolution. The model incorporates recent progress in stellar evolution theory and an observationally motivated prescription for thermally-pulsing stars on the asymptotic giant branch. The latter is supported by observations of surface brightness fluctuations in nearby stellar populations. We show that this model reproduces well the observed optical and near-infrared colour-magnitude diagrams of Galactic star clusters of various ages and metallicities. Stochastic fluctuations in the numbers of stars in different evolutionary phases can account for the full range of observed integrated colours of star clusters in the Magellanic Clouds. The model reproduces in detail typical galaxy spectra from the Early Data Release (EDR) of the Sloan Digital Sky Survey (SDSS). We exemplify how this type of spectral fit can constrain physical parameters such as the star formation history, metallicity and dust content of galaxies. Our model is the first to enable accurate studies of absorption-line strengths in galaxies containing stars over the full range of ages. Using the highest-quality spectra of the SDSS EDR, we show that this model can reproduce simultaneously the observed strengths of those Lick indices that do not depend strongly on element abundance ratios [abridged].

10,384 citations

Journal ArticleDOI
TL;DR: A review of the present-day mass function and initial mass function in various components of the Galaxy (disk, spheroid, young, and globular clusters) and in conditions characteristic of early star formation is presented in this paper.
Abstract: We review recent determinations of the present-day mass function (PDMF) and initial mass function (IMF) in various components of the Galaxy—disk, spheroid, young, and globular clusters—and in conditions characteristic of early star formation. As a general feature, the IMF is found to depend weakly on the environment and to be well described by a power-law form forM , and a lognormal form below, except possibly for m!1 early star formation conditions. The disk IMF for single objects has a characteristic mass around M , m!0.08 c and a variance in logarithmic mass , whereas the IMF for multiple systems hasM , and . j!0.7 m!0.2 j!0.6 c The extension of the single MF into the brown dwarf regime is in good agreement with present estimates of L- and T-dwarf densities and yields a disk brown dwarf number density comparable to the stellar one, n!n! BD " pc !3 .T he IMF of young clusters is found to be consistent with the disk fi eld IMF, providing the same correction 0.1 for unresolved binaries, confirming the fact that young star clusters and disk field stars represent the same stellar population. Dynamical effects, yielding depletion of the lowest mass objects, are found to become consequential for ages!130 Myr. The spheroid IMF relies on much less robust grounds. The large metallicity spread in the local subdwarf photometric sample, in particular, remains puzzling. Recent observations suggest that there is a continuous kinematic shear between the thick-disk population, present in local samples, and the genuine spheroid one. This enables us to derive only an upper limit for the spheroid mass density and IMF. Within all the uncertainties, the latter is found to be similar to the one derived for globular clusters and is well represented also by a lognormal form with a characteristic mass slightly larger than for the disk, M , ,e xcluding as ignif icant population of m!0.2-0.3 c brown dwarfs in globular clusters and in the spheroid. The IMF characteristic of early star formation at large redshift remains undetermined, but different observational constraints suggest that it does not extend below!1M , .T hese results suggest a characteristic mass for star formation that decreases with time, from conditions prevailing at large redshift to conditions characteristic of the spheroid (or thick disk) to present-day conditions.Theseconclusions,however, remain speculative, given the large uncertainties in the spheroid and early star IMF determinations. These IMFs allow a reasonably robust determination of the Galactic present-day and initial stellar and brown dwarf contents. They also have important galactic implications beyond the Milky Way in yielding more accurate mass-to-light ratio determinations. The mass-to-light ratios obtained with the disk and the spheroid IMF yield values 1.8-1.4 times smaller than for a Salpeter IMF, respectively, in agreement with various recent dynamical determinations. This general IMF determination is examined in the context of star formation theory. None of the theories based on a Jeans-type mechanism, where fragmentation is due only to gravity, can fulfill all the observational constraints on star formation and predict a large number of substellar objects. On the other hand, recent numerical simulations of compressible turbulence, in particular in super-Alfvenic conditions, seem to reproduce both qualitatively and quantitatively the stellar and substellar IMF and thus provide an appealing theoretical foundation. In this picture, star formation is induced by the dissipation of large-scale turbulence to smaller scales through radiative MHD shocks, producing filamentary structures. These shocks produce local nonequilibrium structures with large density contrasts, which collapse eventually in gravitationally bound objects under the combined influence of turbulence and gravity. The concept of a single Jeans mass is replaced by a distribution of local Jeans masses, representative of the lognormal probability density function of the turbulent gas. Objects below the mean thermal Jeans mass still have a possibility to collapse, although with a decreasing probability.

8,218 citations

Journal ArticleDOI
TL;DR: In this article, high-resolution N-body simulations show that the density profiles of dark matter halos formed in the standard CDM cosmogony can be fit accurately by scaling a simple universal profile.
Abstract: High resolution N-body simulations show that the density profiles of dark matter halos formed in the standard CDM cosmogony can be fit accurately by scaling a simple “universal” profile. Regardless of their mass, halos are nearly isothermal over a large range in radius, but significantly shallower than r -2 near the center and steeper than r -2 in the outer regions. The characteristic overdensity of a halo correlates strongly with halo mass in a manner consistent with the mass dependence of the epoch of halo formation. Matching the shape of the rotation curves of disk galaxies with this halo structure requires (i) disk mass-to-light ratios to increase systematically with luminosity, (ii) halo circular velocities to be systematically lower than the disk rotation speed, and (iii) that the masses of halos surrounding bright galaxies depend only weakly on galaxy luminosity. This offers an attractive explanation for the puzzling lack of correlation between luminosity and dynamics in observed samples of binary galaxies and of satellite companions of bright spiral galaxies, suggesting that the structure of dark matter halos surrounding bright spirals is similar to that of cold dark matter halos.

7,622 citations

Journal ArticleDOI
TL;DR: A series of improvements to the spectroscopic reductions are described, including better flat fielding and improved wavelength calibration at the blue end, better processing of objects with extremely strong narrow emission lines, and an improved determination of stellar metallicities.
Abstract: This paper describes the Seventh Data Release of the Sloan Digital Sky Survey (SDSS), marking the completion of the original goals of the SDSS and the end of the phase known as SDSS-II. It includes 11,663 deg^2 of imaging data, with most of the ~2000 deg^2 increment over the previous data release lying in regions of low Galactic latitude. The catalog contains five-band photometry for 357 million distinct objects. The survey also includes repeat photometry on a 120° long, 2°.5 wide stripe along the celestial equator in the Southern Galactic Cap, with some regions covered by as many as 90 individual imaging runs. We include a co-addition of the best of these data, going roughly 2 mag fainter than the main survey over 250 deg^2. The survey has completed spectroscopy over 9380 deg^2; the spectroscopy is now complete over a large contiguous area of the Northern Galactic Cap, closing the gap that was present in previous data releases. There are over 1.6 million spectra in total, including 930,000 galaxies, 120,000 quasars, and 460,000 stars. The data release includes improved stellar photometry at low Galactic latitude. The astrometry has all been recalibrated with the second version of the USNO CCD Astrograph Catalog, reducing the rms statistical errors at the bright end to 45 milliarcseconds per coordinate. We further quantify a systematic error in bright galaxy photometry due to poor sky determination; this problem is less severe than previously reported for the majority of galaxies. Finally, we describe a series of improvements to the spectroscopic reductions, including better flat fielding and improved wavelength calibration at the blue end, better processing of objects with extremely strong narrow emission lines, and an improved determination of stellar metallicities.

5,665 citations