scispace - formally typeset
Search or ask a question
Author

Sandra M. Kolkman-Uljee

Other affiliations: Leiden University
Bio: Sandra M. Kolkman-Uljee is an academic researcher from Leiden University Medical Center. The author has contributed to research in topics: Serous fluid & Cervical cancer. The author has an hindex of 10, co-authored 12 publications receiving 683 citations. Previous affiliations of Sandra M. Kolkman-Uljee include Leiden University.

Papers
More filters
Journal ArticleDOI
TL;DR: The finding that at least 60% of serous borderline tumours harbour mutations in two members of the ERK‐MAP‐kinase pathway compared with 12% of high‐grade serous carcinomas (BRAF 0%, KRAS 12%) indicates that the majority of serious borderline tumoured tumours do not progress to serious carcinomas.
Abstract: Genes of the RAF family, which mediate cellular responses to growth signals, encode kinases that are regulated by RAS and participate in the RAS/RAF/MEK/ERK/MAP-kinase pathway. Activating mutations in BRAF have recently been identified in melanomas, colorectal cancers, and thyroid and ovarian tumours. In the present study, an extensive characterization of BRAF and KRAS mutations has been performed in 264 epithelial and non-epithelial ovarian neoplasms. The epithelial tumours ranged from adenomas and borderline neoplasms to invasive carcinomas including serous, mucinous, clear cell, and endometrioid lesions. It is shown that BRAF mutations in ovarian tumours occur exclusively in low-grade serous neoplasms (33 of 91, 36%); these included serous borderline tumours (typical and micropapillary variants), an invasive micropapillary carcinoma and a psammocarcinoma. KRAS mutations were identified in 26 of 91 (29.5%) low-grade serous tumours, 7 of 49 (12%) high-grade serous carcinomas, 2 of 6 mucinous adenomas, 22 of 28 mucinous borderline tumours, and 10 of 18 mucinous carcinomas. Of note, two serous borderline tumours were found to harbour both BRAF and KRAS mutations. The finding that at least 60% of serous borderline tumours harbour mutations in two members of the ERK-MAP-kinase pathway (BRAF 36%, KRAS 30%) compared with 12% of high-grade serous carcinomas (BRAF 0%, KRAS 12%) indicates that the majority of serous borderline tumours do not progress to serous carcinomas. Furthermore, no BRAF mutations were detected in the other 173 ovarian tumours in this study.

251 citations

Journal ArticleDOI
TL;DR: It is proposed that the putative tumor suppressor genes Dusp 4 and Serpina 5 provide a major clue to the indolent behavior of SBTs.
Abstract: Purpose Ovarian serous borderline tumors (SBT) are characterized by arborizing papillae lined by stratified epithelial cells, varying atypia, and absence of stromal invasion. Originally, these tumors have been classified as borderline because they behaved in a remarkably indolent manner, even with widespread tumor deposits called implants and the presence of lymph node involvement. The molecular biology of these lesions has just begun to be explored. High prevalence of B-RAF/K-RAS mutations in SBTs in contrast to serous carcinomas (SCAs) indicates that the mitogenicRAS-RAF-MEK-ERK-MAP kinase pathway is crucial for the pathogenesisof SBTs. The purpose of this study was to further unravel the genetic pathways through which SBTs develop, with a special focus on explaining the generally benign SBT behavior.

93 citations

Journal ArticleDOI
TL;DR: The high amount of multiple HPV infections found in adenosquamous carcinomas may prompt further research on the pathogenesis of this type of cervical tumours.

74 citations

Journal ArticleDOI
TL;DR: The majority of the HPV 16-positive cervical cancers in Indonesia are caused by a specific intratypic variant that was rarely found before in other countries.

72 citations

Journal ArticleDOI
TL;DR: It is concluded that the HPV SybrGreen-PCR in combination with the HPV molecular beacon PCR provides a robust, sensitive, and quantitative general HPV detection and genotyping methodology.
Abstract: Human papillomaviruses (HPVs) play an important role in the pathogenesis of cervical cancer. For identification of the large number of different HPV types found in (pre)malignant lesions, a robust methodology is needed that combines general HPV detection with HPV genotyping. We have developed for formaldehyde-fixed samples a strategy that, in a homogenous, real-time fluorescence polymerase chain reaction (PCR)-based assay, accomplishes general HPV detection by SybrGreen reporting of HPV-DNA amplicons, and genotyping of seven prevalent HPV types (HPV-6, -11, -16, -18, -31, -33, -45) by real-time molecular beacon PCR. The false-positive rate of the HPV SybrGreen-PCR was 4%, making it well suited as a prescreening, general HPV detection technology. The type specificity of the seven selected HPV molecular beacons was 100% and double infections were readily identified. The multiplexing capacity of the HPV molecular beacon PCR was analyzed and up to three differently labeled molecular beacons could be used in one PCR reaction without observing cross talk. The inherent quantitation capacities of real-time fluorescence PCR allowed the determination of average HPV copy number per cell. We conclude that the HPV SybrGreen-PCR in combination with the HPV molecular beacon PCR provides a robust, sensitive, and quantitative general HPV detection and genotyping methodology.

67 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The purposes of this review are to highlight examples of progress in many areas of cancer research, indicate where knowledge is scarce and point out fertile grounds for future investigation.
Abstract: The revolution in cancer research can be summed up in a single sentence: cancer is, in essence, a genetic disease. In the last decade, many important genes responsible for the genesis of various cancers have been discovered, their mutations precisely identified, and the pathways through which they act characterized. The purposes of this review are to highlight examples of progress in these areas, indicate where knowledge is scarce and point out fertile grounds for future investigation.

4,159 citations

Journal ArticleDOI
14 May 2007-Oncogene
TL;DR: The current status of the different approaches and targets that are under evaluation and development for the therapeutic intervention of this key signaling pathway in human disease are summarized.
Abstract: Mitogen-activated protein kinase (MAPK) cascades are key signaling pathways involved in the regulation of normal cell proliferation, survival and differentiation. Aberrant regulation of MAPK cascades contribute to cancer and other human diseases. In particular, the extracellular signal-regulated kinase (ERK) MAPK pathway has been the subject of intense research scrutiny leading to the development of pharmacologic inhibitors for the treatment of cancer. ERK is a downstream component of an evolutionarily conserved signaling module that is activated by the Raf serine/threonine kinases. Raf activates the MAPK/ERK kinase (MEK)1/2 dual-specificity protein kinases, which then activate ERK1/2. The mutational activation of Raf in human cancers supports the important role of this pathway in human oncogenesis. Additionally, the Raf-MEK-ERK pathway is a key downstream effector of the Ras small GTPase, the most frequently mutated oncogene in human cancers. Finally, Ras is a key downstream effector of the epidermal growth factor receptor (EGFR), which is mutationally activated and/or overexpressed in a wide variety of human cancers. ERK activation also promotes upregulated expression of EGFR ligands, promoting an autocrine growth loop critical for tumor growth. Thus, the EGFR-Ras-Raf-MEK-ERK signaling network has been the subject of intense research and pharmaceutical scrutiny to identify novel target-based approaches for cancer treatment. In this review, we summarize the current status of the different approaches and targets that are under evaluation and development for the therapeutic intervention of this key signaling pathway in human disease.

2,635 citations

Journal ArticleDOI
TL;DR: Gene expression profiling identified molecular subtypes of ovarian cancer of biological and clinical importance by gene expression profiling with linkage to clinical and pathologic features.
Abstract: PURPOSE: The study aim to identify novel molecular subtypes of ovarian cancer by gene expression profiling with linkage to clinical and pathologic features. EXPERIMENTAL DESIGN: Microarray gene expression profiling was done on 285 serous and endometrioid tumors of the ovary, peritoneum, and fallopian tube. K-means clustering was applied to identify robust molecular subtypes. Statistical analysis identified differentially expressed genes, pathways, and gene ontologies. Laser capture microdissection, pathology review, and immunohistochemistry validated the array-based findings. Patient survival within k-means groups was evaluated using Cox proportional hazards models. Class prediction validated k-means groups in an independent dataset. A semisupervised survival analysis of the array data was used to compare against unsupervised clustering results. RESULTS: Optimal clustering of array data identified six molecular subtypes. Two subtypes represented predominantly serous low malignant potential and low-grade endometrioid subtypes, respectively. The remaining four subtypes represented higher grade and advanced stage cancers of serous and endometrioid morphology. A novel subtype of high-grade serous cancers reflected a mesenchymal cell type, characterized by overexpression of N-cadherin and P-cadherin and low expression of differentiation markers, including CA125 and MUC1. A poor prognosis subtype was defined by a reactive stroma gene expression signature, correlating with extensive desmoplasia in such samples. A similar poor prognosis signature could be found using a semisupervised analysis. Each subtype displayed distinct levels and patterns of immune cell infiltration. Class prediction identified similar subtypes in an independent ovarian dataset with similar prognostic trends. CONCLUSION: Gene expression profiling identified molecular subtypes of ovarian cancer of biological and clinical importance.

1,270 citations

Journal ArticleDOI
TL;DR: The results indicate that the gap between cell lines and tumours can be bridged by genomically informed choices of cell line models for all tumour types.
Abstract: Cancer cell lines are frequently used as in vitro tumour models. Recent molecular profiles of hundreds of cell lines from The Cancer Cell Line Encyclopedia and thousands of tumour samples from the Cancer Genome Atlas now allow a systematic genomic comparison of cell lines and tumours. Here we analyse a panel of 47 ovarian cancer cell lines and identify those that have the highest genetic similarity to ovarian tumours. Our comparison of copy-number changes, mutations and mRNA expression profiles reveals pronounced differences in molecular profiles between commonly used ovarian cancer cell lines and high-grade serous ovarian cancer tumour samples. We identify several rarely used cell lines that more closely resemble cognate tumour profiles than commonly used cell lines, and we propose these lines as the most suitable models of ovarian cancer. Our results indicate that the gap between cell lines and tumours can be bridged by genomically informed choices of cell line models for all tumour types.

1,150 citations