scispace - formally typeset
Search or ask a question
Author

Sandra Reitmeier

Bio: Sandra Reitmeier is an academic researcher from Technische Universität München. The author has contributed to research in topics: Microbiome & Gut flora. The author has an hindex of 5, co-authored 13 publications receiving 100 citations.
Topics: Microbiome, Gut flora, Medicine, Dysbiosis, Biology

Papers
More filters
Journal ArticleDOI
TL;DR: A cohort-specific risk pattern of arrhythmic taxa enables classification and prediction of type 2 diabetes (T2D), suggesting a functional link between circadian rhythms and the microbiome in metabolic diseases.

115 citations

Journal ArticleDOI
TL;DR: A comprehensive overview of state-of-the-art methods to infer intra-kingdom interactions ranging from simple correlation-to complex conditional dependence-based methods can be found in this paper.
Abstract: Microorganisms including bacteria, fungi, viruses, protists and archaea live as communities in complex and contiguous environments. They engage in numerous inter- and intra- kingdom interactions which can be inferred from microbiome profiling data. In particular, network-based approaches have proven helpful in deciphering complex microbial interaction patterns. Here we give an overview of state-of-the-art methods to infer intra-kingdom interactions ranging from simple correlation- to complex conditional dependence-based methods. We highlight common biases encountered in microbial profiles and discuss mitigation strategies employed by different tools and their trade-off with increased computational complexity. Finally, we discuss current limitations that motivate further method development to infer inter-kingdom interactions and to robustly and comprehensively characterize microbial environments in the future.

78 citations

Journal ArticleDOI
24 Feb 2021
TL;DR: In this paper, a comparative study on differences in procedures for 16S rRNA gene sequencing is presented, and the authors highlight the importance of a thought-out study design including sufficiently complex mock standards and appropriate V-region choice for the sample of interest.
Abstract: Short-amplicon 16S rRNA gene sequencing is currently the method of choice for studies investigating microbiomes. However, comparative studies on differences in procedures are scarce. We sequenced human stool samples and mock communities with increasing complexity using a variety of commonly used protocols. Short amplicons targeting different variable regions (V-regions) or ranges thereof (V1-V2, V1-V3, V3-V4, V4, V4-V5, V6-V8, and V7-V9) were investigated for differences in the composition outcome due to primer choices. Next, the influence of clustering (operational taxonomic units [OTUs], zero-radius OTUs [zOTUs], and amplicon sequence variants [ASVs]), different databases (GreenGenes, the Ribosomal Database Project, Silva, the genomic-based 16S rRNA Database, and The All-Species Living Tree), and bioinformatic settings on taxonomic assignment were also investigated. We present a systematic comparison across all typically used V-regions using well-established primers. While it is known that the primer choice has a significant influence on the resulting microbial composition, we show that microbial profiles generated using different primer pairs need independent validation of performance. Further, comparing data sets across V-regions using different databases might be misleading due to differences in nomenclature (e.g., Enterorhabdus versus Adlercreutzia) and varying precisions in classification down to genus level. Overall, specific but important taxa are not picked up by certain primer pairs (e.g., Bacteroidetes is missed using primers 515F-944R) or due to the database used (e.g., Acetatifactor in GreenGenes and the genomic-based 16S rRNA Database). We found that appropriate truncation of amplicons is essential and different truncated-length combinations should be tested for each study. Finally, specific mock communities of sufficient and adequate complexity are highly recommended.IMPORTANCE In 16S rRNA gene sequencing, certain bacterial genera were found to be underrepresented or even missing in taxonomic profiles when using unsuitable primer combinations, outdated reference databases, or inadequate pipeline settings. Concerning the last, quality thresholds as well as bioinformatic settings (i.e., clustering approach, analysis pipeline, and specific adjustments such as truncation) are responsible for a number of observed differences between studies. Conclusions drawn by comparing one data set to another (e.g., between publications) appear to be problematic and require independent cross-validation using matching V-regions and uniform data processing. Therefore, we highlight the importance of a thought-out study design including sufficiently complex mock standards and appropriate V-region choice for the sample of interest. The use of processing pipelines and parameters must be tested beforehand.

74 citations

Journal ArticleDOI
TL;DR: The authors in this article provide a broad insight into the microbiome signatures linked to inflammatory and metabolic disorders, discuss outstanding challenges in this field and propose applications of multi-omics technologies that could lead to an improved mechanistic understanding of microorganism-host interactions.
Abstract: The intestine harbours a complex array of microorganisms collectively known as the gut microbiota. The past two decades have witnessed increasing interest in studying the gut microbiota in health and disease, largely driven by rapid innovation in high-throughput multi-omics technologies. As a result, microbial dysbiosis has been linked to many human pathologies, including type 2 diabetes mellitus and inflammatory bowel disease. Integrated analyses of multi-omics data, including metagenomics and metabolomics along with measurements of host response and cataloguing of bacterial isolates, have identified many bacteria and bacterial products that are correlated with disease. Nevertheless, insight into the mechanisms through which microbes affect intestinal health requires going beyond correlation to causation. Current understanding of the contribution of the gut microbiota to disease causality remains limited, largely owing to the heterogeneity of microbial community structures, interindividual differences in disease evolution and incomplete understanding of the mechanisms that integrate microbiota-derived signals into host signalling pathways. In this Review, we provide a broad insight into the microbiome signatures linked to inflammatory and metabolic disorders, discuss outstanding challenges in this field and propose applications of multi-omics technologies that could lead to an improved mechanistic understanding of microorganism-host interactions.

50 citations

Journal ArticleDOI
29 Jun 2021
TL;DR: In this paper, the occurrence of spurious sequences using defined microbial communities based on data either from the literature or generated in three sequencing facilities and analyzed via both operational taxonomic units (OTUs) and amplicon sequence variants (ASVs) approaches.
Abstract: 16S rRNA gene amplicon sequencing is a popular approach for studying microbiomes. However, some basic concepts have still not been investigated comprehensively. We studied the occurrence of spurious sequences using defined microbial communities based on data either from the literature or generated in three sequencing facilities and analyzed via both operational taxonomic units (OTUs) and amplicon sequence variants (ASVs) approaches. OTU clustering and singleton removal, a commonly used approach, delivered approximately 50% (mock communities) to 80% (gnotobiotic mice) spurious taxa. The fraction of spurious taxa was generally lower based on ASV analysis, but varied depending on the gene region targeted and the barcoding system used. A relative abundance of 0.25% was found as an effective threshold below which the analysis of spurious taxa can be prevented to a large extent in both OTU- and ASV-based analysis approaches. Using this cutoff improved the reproducibility of analysis, i.e., variation in richness estimates was reduced by 38% compared with singleton filtering using six human fecal samples across seven sequencing runs. Beta-diversity analysis of human fecal communities was markedly affected by both the filtering strategy and the type of phylogenetic distances used for comparison, highlighting the importance of carefully analyzing data before drawing conclusions on microbiome changes. In summary, handling of artifact sequences during bioinformatic processing of 16S rRNA gene amplicon data requires careful attention to avoid the generation of misleading findings. We propose the concept of effective richness to facilitate the comparison of alpha-diversity across studies.

49 citations


Cited by
More filters
Journal Article
TL;DR: FastTree as mentioned in this paper uses sequence profiles of internal nodes in the tree to implement neighbor-joining and uses heuristics to quickly identify candidate joins, then uses nearest-neighbor interchanges to reduce the length of the tree.
Abstract: Gene families are growing rapidly, but standard methods for inferring phylogenies do not scale to alignments with over 10,000 sequences. We present FastTree, a method for constructing large phylogenies and for estimating their reliability. Instead of storing a distance matrix, FastTree stores sequence profiles of internal nodes in the tree. FastTree uses these profiles to implement neighbor-joining and uses heuristics to quickly identify candidate joins. FastTree then uses nearest-neighbor interchanges to reduce the length of the tree. For an alignment with N sequences, L sites, and a different characters, a distance matrix requires O(N^2) space and O(N^2 L) time, but FastTree requires just O( NLa + N sqrt(N) ) memory and O( N sqrt(N) log(N) L a ) time. To estimate the tree's reliability, FastTree uses local bootstrapping, which gives another 100-fold speedup over a distance matrix. For example, FastTree computed a tree and support values for 158,022 distinct 16S ribosomal RNAs in 17 hours and 2.4 gigabytes of memory. Just computing pairwise Jukes-Cantor distances and storing them, without inferring a tree or bootstrapping, would require 17 hours and 50 gigabytes of memory. In simulations, FastTree was slightly more accurate than neighbor joining, BIONJ, or FastME; on genuine alignments, FastTree's topologies had higher likelihoods. FastTree is available at http://microbesonline.org/fasttree.

2,436 citations

Journal ArticleDOI
TL;DR: Use of microbiome-based biomarkers in diagnosis, prognosis, risk profiling, and precision therapy requires definition of a healthy microbiome in different populations, but to determine features of the intestinal microbiota associated with health, there need improved microbiome profiling technologies, with strain-level resolution.

138 citations

Journal ArticleDOI
TL;DR: A cohort-specific risk pattern of arrhythmic taxa enables classification and prediction of type 2 diabetes (T2D), suggesting a functional link between circadian rhythms and the microbiome in metabolic diseases.

115 citations

Journal ArticleDOI
TL;DR: Extibacter muris is a newly described mouse gut bacterium which metabolizes cholic acid (CA) to deoxycholic acid via 7α-dehydroxylation.
Abstract: Extibacter muris is a newly described mouse gut bacterium which metabolizes cholic acid (CA) to deoxycholic acid (DCA) via 7α-dehydroxylation. Although bile acids influence metabolic and inflammatory responses, few in vivo models exist for studying their metabolism and impact on the host. Mice were colonized from birth with the simplified community Oligo-MM12 with or without E. muris. As the metabolism of bile acids is known to affect lipid homeostasis, mice were fed either a low- or high-fat diet for eight weeks before sampling and analyses targeting the gut and liver. Multiple Oligo-MM12 strains were capable of deconjugating primary bile acids in vitro. E. muris produced DCA from CA either as pure compound or in mouse bile. This production was inducible by CA in vitro. Ursodeoxycholic, chenodeoxycholic, and β-muricholic acid were not metabolized under the conditions tested. All gnotobiotic mice were stably colonized with E. muris, which showed higher relative abundances after HF diet feeding. The presence of E. muris had minor, diet-dependent effects on Oligo-MM12 communities. The secondary bile acids DCA and surprisingly LCA and their taurine conjugates were detected exclusively in E. muris-colonized mice. E. muris colonization did not influence body weight, white adipose tissue mass, liver histopathology, hepatic aspartate aminotransferase, or blood levels of cholesterol, insulin, and paralytic peptide (PP). However, proteomics revealed shifts in hepatic pathways involved in amino acid, glucose, lipid, energy, and drug metabolism in E. muris-colonized mice. Liver fatty acid composition was substantially altered by dietary fat but not by E. muris.In summary, E. muris stably colonized the gut of mice harboring a simplified community and produced secondary bile acids, which affected proteomes in the liver. This new gnotobiotic mouse model can now be used to study the pathophysiological role of secondary bile acids in vivo.

96 citations

Journal ArticleDOI
01 Sep 2022-Cell
TL;DR: In this article , the cancer mycobiome within 17,401 patient tissue, blood, and plasma samples across 35 cancer types in four independent cohorts was comprehensively characterized, with fungal DNA and cells at low abundances across many major human cancers.

78 citations