scispace - formally typeset
Search or ask a question
Author

Sang-Ho Lee

Bio: Sang-Ho Lee is an academic researcher from Chungbuk National University. The author has contributed to research in topics: Transpiration & Plant physiology. The author has an hindex of 1, co-authored 1 publications receiving 137 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Both the quality and the quantity of light affect growth of plantlets, development of stomata and physiological responses differently depending on the intensity and the wavelength of light.
Abstract: The aim of the study was to establish whether the quantity and the quality of light affect growth and development of Withania somnifera plantlets. We have studied growth and histo-physiological parameters [stomatal characteristics, chloroplastic pigments concentrations, photosynthesis, and transpiration (E)] of W. somnifera plantlets regenerated under various light intensities, or monochromatic light or under a mixture of two colors of light in tissue culture conditions. Plantlets grown under a photon flux density (PFD) of 30 μmol m-2 s-1 showed greater growth and development than those raised under other PFDs. Chlorophylls and carotenoids, numbers of stomata, rate of photosynthesis (PN) and transpiration (E), stomatal conductance (gs), and water use efficiency (WUE) increased with increasing the PFD up to 60 μmol m-2 s-1. Light quality also affected plantlets growth and physiology. Highest growth was observed under fluorescent and in a mixture of blue and red light. Very few stomata were developed in any of the monochromatic light but under fluorescent or under a mixture of two colors stomatal numbers increased. Similarly, gs, E, PN, and WUE were also higher under fluorescent light and under a mixture of red and blue light. Regressional analysis showed a linear relationship between PN (r2 = 70) and gs and between E (r2 = 0.95) and gs. In conclusion, both the quality and the quantity of light affect growth of plantlets, development of stomata and physiological responses differently depending on the intensity and the wavelength of light.

169 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that supplemental light quality can be strategically used to enhance the nutritional value and growth of lettuce plants grown under RBW LED lights.

513 citations

Journal ArticleDOI
TL;DR: It is concluded that quantitative B could promote photosynthetic performance or growth by stimulating morphological and physiological responses, yet there was no positive correlation between Pn and shoot dry weight accumulation.
Abstract: Red and blue light are both vital factors for plant growth and development. We examined how different ratios of red light to blue light (R/B) provided by light-emitting diodes affected photosynthetic performance by investigating parameters related to photosynthesis, including leaf morphology, photosynthetic rate, chlorophyll fluorescence, stomatal development, light response curve, and nitrogen content. In this study, lettuce plants (Lactuca sativa L.) were exposed to 200 μmol⋅m(-2)⋅s(-1) irradiance for a 16 h⋅d(-1) photoperiod under the following six treatments: monochromatic red light (R), monochromatic blue light (B) and the mixture of R and B with different R/B ratios of 12, 8, 4, and 1. Leaf photosynthetic capacity (A max) and photosynthetic rate (P n) increased with decreasing R/B ratio until 1, associated with increased stomatal conductance, along with significant increase in stomatal density and slight decrease in stomatal size. P n and A max under B treatment had 7.6 and 11.8% reduction in comparison with those under R/B = 1 treatment, respectively. The effective quantum yield of PSII and the efficiency of excitation captured by open PSII center were also significantly lower under B treatment than those under the other treatments. However, shoot dry weight increased with increasing R/B ratio with the greatest value under R/B = 12 treatment. The increase of shoot dry weight was mainly caused by increasing leaf area and leaf number, but no significant difference was observed between R and R/B = 12 treatments. Based on the above results, we conclude that quantitative B could promote photosynthetic performance or growth by stimulating morphological and physiological responses, yet there was no positive correlation between P n and shoot dry weight accumulation.

266 citations

Journal ArticleDOI
TL;DR: The results implied that, compared to other light treatments, 300 μmol m −2 s −1 was more suitable for the culture of young tomato plants and there was no substantial gain from a PPFD above that level.

262 citations

Journal ArticleDOI
TL;DR: Blue and red LED (B:R = 1:1) was the most suitable light for the growth of upland cotton plantlets in vitro, and it may be used as alternative light source for an upland Cotton culture system.
Abstract: The objective of this study was to determine the effects of different light-emitting diode (LED) light sources on the growth of upland cotton (Gossypium hirsutum L.) plantlets. Shoot bud apex cuttings of upland cotton (1.0 cm) were transplanted on Murashige and Skoog (MS) basal medium supplemented with 0.1 mg/l 6-benzyladenine (BA) and 0.5 mg/l naphthalene acetic acid (NAA) and cultured in vitro for 45 days. They were exposed to 50 μmol m−2 s−1 photosynthetic photon flux (PPF) and a 12-h photoperiod under six different lights: fluorescent lamp (CON), monochromatic blue LED (B), three blue and red LED mixtures (B:R = 3:1, 1:1, 1:3) and monochromatic red LED (R). The effects of the six light sources on growth and morphogenesis of upland cotton plantlets grown in vitro were investigated. Fresh weight, dry weight, stem length and second internode length were greatest in plantlets cultured under the B:R = 1:1 blue and red LED light, followed by blue LED light, and they were lowest in plantlets cultured under a fluorescent lamp. Chlorophyll content, leaf thickness, palisade tissue length, leaf and stomata area were highest in plantlets cultured under blue LED light. Root activity, sucrose, starch and soluble sugar contents were highest in plantlets cultured under red LED light. Our results showed that larger, healthier plantlets and a greater biomass of upland cotton were produced in the presence of red LED supplemented with a quantity of blue LED light. Blue and red LED (B:R = 1:1) was the most suitable light for the growth of upland cotton plantlets in vitro, and it may be used as alternative light source for an upland cotton culture system.

217 citations

Journal ArticleDOI
TL;DR: In this paper, an amalgamation of the recent research achievements in the horticulture and floriculture industry, ranging from greenhouse applications to climate rooms and vertical farming, is presented.

194 citations