scispace - formally typeset
Search or ask a question
Author

Sang-Min Jang

Bio: Sang-Min Jang is an academic researcher from Chungbuk National University. The author has contributed to research in topics: Chromatin & Ubiquitin ligase. The author has an hindex of 1, co-authored 4 publications receiving 4 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors determined DNA synthesis patterns in cancer cells undergoing partial genome re-replication due to perturbed regulatory interactions (re-replicating cells) and found that these cells exhibited slow replication, increased frequency of replication initiation events, and a skewed initiation pattern that preferentially reactivated early replicating origins, indicating that circumventing strong inhibitory interactions that normally prevent excess DNA synthesis can occur via at least two pathways, each activating a distinct set of replication origins.
Abstract: Safeguards against excess DNA replication are often dysregulated in cancer, and driving cancer cells towards over-replication is a promising therapeutic strategy. We determined DNA synthesis patterns in cancer cells undergoing partial genome re-replication due to perturbed regulatory interactions (re-replicating cells). These cells exhibited slow replication, increased frequency of replication initiation events, and a skewed initiation pattern that preferentially reactivated early-replicating origins. Unlike in cells exposed to replication stress, which activated a novel group of hitherto unutilized (dormant) replication origins, the preferred re-replicating origins arose from the same pool of potential origins as those activated during normal growth. Mechanistically, the skewed initiation pattern reflected a disproportionate distribution of pre-replication complexes on distinct regions of licensed chromatin prior to replication. This distinct pattern suggests that circumventing the strong inhibitory interactions that normally prevent excess DNA synthesis can occur via at least two pathways, each activating a distinct set of replication origins.

19 citations

Journal ArticleDOI
TL;DR: In this paper, the Cullin-Ring Ubiquitin Ligase 4 (CRL4) complex was used as a substrate receptor for the degradation of proteins that regulate cell growth and proliferation.
Abstract: Deciphering how DCAFs (DDB1-CUL4 Associated Factors) modulate a broad spectrum of cellular processes, including cell cycle progression and maintenance of genomic integrity is critical to better understand cellular homeostasis and diseases. Cells contain more than 100 DCAFs that associate with the Cullin-Ring Ubiquitin Ligase 4 (CRL4) complex that target specific protein substrates for degradation. DCAFs are thought to act as substrate receptors that dictate the specificity of the ubiquitination machinery ("catalytic DCAFs"). However, recent studies have suggested that some DCAFs might play a different role by targeting CRL4 complexes to distinct cellular compartments ("structural DCAFs"). Once localized to their correct cellular domains, these CRLs dissociate from the structural DCAFs prior to their association with other, substrate-specific catalytic DCAFs. Thus, we propose that DCAF switches can provide a mechanistic basis for the degradation of proteins that regulate cell growth and proliferation at precise points in space and time.

5 citations

Journal ArticleDOI
TL;DR: The space occupancy of the RepID WD40 domain to form a complex with CRL4, BUB3, or chromatin has been investigated in this paper, where it was shown that deletion mutants of the H-box or exon 8 damaged chromatin binding affinity.

2 citations

Journal ArticleDOI
TL;DR: The results show that RepID is required to prevent excessive DNA damage at the endogenous levels, and suggest that p97/VCP inhibitors synergize with RepID depletion to kill cancer cells.
Abstract: The p97/valosin-containing protein (VCP) complex is a crucial factor for the segregation of ubiquitinated proteins in the DNA damage response and repair pathway. We investigated whether blocking the p97/VCP function can inhibit the proliferation of RepID-deficient cancer cells using immunofluorescence, clonogenic survival assay, fluorescence-activated cell sorting, and immunoblotting. p97/VCP was recruited to chromatin and colocalized with DNA double-strand breaks in RepID-deficient cancer cells that undergo spontaneous DNA damage. Inhibition of p97/VCP induced death of RepID-depleted cancer cells. This study highlights the potential of targeting p97/VCP complex as an anticancer therapeutic approach. Our results show that RepID is required to prevent excessive DNA damage at the endogenous levels. Localization of p97/VCP to DSB sites was induced based on spontaneous DNA damage in RepID-depleted cancer cells. Anticancer drugs targeting p97/VCP may be highly potent in RepID-deficient cells. Therefore, we suggest that p97/VCP inhibitors synergize with RepID depletion to kill cancer cells.

1 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review on the major sources of replication stress, the impacts of DNA replication stress in cells, and the assays to detect replication stress can be found in this paper , which provides an overview of the hallmarks of the replication stress.

42 citations

Journal ArticleDOI
14 Sep 2021-Cancers
TL;DR: In this article, the authors provide background information on the molecular processes of DNA replication and its checkpoints, and discuss how to target replication, checkpoint, and repair pathways with ATR inhibitors and exploit Schlafen 11 (SLFN11) as a predictive biomarker.
Abstract: Precision medicine aims to implement strategies based on the molecular features of tumors and optimized drug delivery to improve cancer diagnosis and treatment. DNA replication is a logical approach because it can be targeted by a broad range of anticancer drugs that are both clinically approved and in development. These drugs increase deleterious replication stress (RepStress); however, how to selectively target and identify the tumors with specific molecular characteristics are unmet clinical needs. Here, we provide background information on the molecular processes of DNA replication and its checkpoints, and discuss how to target replication, checkpoint, and repair pathways with ATR inhibitors and exploit Schlafen 11 (SLFN11) as a predictive biomarker.

12 citations

Journal ArticleDOI
TL;DR: It is reported here that dormant origins are a group of consistent, pre-determined genomic sequences that are distinguished from baseline (i.e. ordinarily active) origins by their preferential association with two phospho-isoforms of the helicase component MCM2.
Abstract: During routine genome duplication, many potential replication origins remain inactive or 'dormant'. Such origin dormancy is achieved, in part, by an interaction with the metabolic sensor SIRT1 deacetylase. We report here that dormant origins are a group of consistent, pre-determined genomic sequences that are distinguished from baseline (i.e. ordinarily active) origins by their preferential association with two phospho-isoforms of the helicase component MCM2. During normal unperturbed cell growth, baseline origins, but not dormant origins, associate with a form of MCM2 that is phosphorylated by DBF4-dependent kinase (DDK) on serine 139 (pS139-MCM2). This association facilitates the initiation of DNA replication from baseline origins. Concomitantly, SIRT1 inhibits Ataxia Telangiectasia and Rad3-related (ATR)-kinase-mediated phosphorylation of MCM2 on serine 108 (pS108-MCM2) by deacetylating the ATR-interacting protein DNA topoisomerase II binding protein 1 (TOPBP1), thereby preventing ATR recruitment to chromatin. In cells devoid of SIRT1 activity, or challenged by replication stress, this inhibition is circumvented, enabling ATR-mediated S108-MCM2 phosphorylation. In turn, pS108-MCM2 enables DDK-mediated phosphorylation on S139-MCM2 and facilitates replication initiation at dormant origins. These observations suggest that replication origin dormancy and activation are regulated by distinct post-translational MCM modifications that reflect a balance between SIRT1 activity and ATR signaling.

11 citations

Journal ArticleDOI
TL;DR: In this paper , SIRT1 deacetylase was found to associate with a form of MCM2 that is phosphorylated by DBF4-dependent kinase (DDK) on serine 139 (pS139-MCM2), which facilitates the initiation of DNA replication from baseline origins.
Abstract: Abstract During routine genome duplication, many potential replication origins remain inactive or ‘dormant’. Such origin dormancy is achieved, in part, by an interaction with the metabolic sensor SIRT1 deacetylase. We report here that dormant origins are a group of consistent, pre-determined genomic sequences that are distinguished from baseline (i.e. ordinarily active) origins by their preferential association with two phospho-isoforms of the helicase component MCM2. During normal unperturbed cell growth, baseline origins, but not dormant origins, associate with a form of MCM2 that is phosphorylated by DBF4-dependent kinase (DDK) on serine 139 (pS139-MCM2). This association facilitates the initiation of DNA replication from baseline origins. Concomitantly, SIRT1 inhibits Ataxia Telangiectasia and Rad3-related (ATR)-kinase-mediated phosphorylation of MCM2 on serine 108 (pS108-MCM2) by deacetylating the ATR-interacting protein DNA topoisomerase II binding protein 1 (TOPBP1), thereby preventing ATR recruitment to chromatin. In cells devoid of SIRT1 activity, or challenged by replication stress, this inhibition is circumvented, enabling ATR-mediated S108-MCM2 phosphorylation. In turn, pS108-MCM2 enables DDK-mediated phosphorylation on S139-MCM2 and facilitates replication initiation at dormant origins. These observations suggest that replication origin dormancy and activation are regulated by distinct post-translational MCM modifications that reflect a balance between SIRT1 activity and ATR signaling.

9 citations

Journal ArticleDOI
TL;DR: The protein cereblon (CRBN) is a substrate receptor of the cullin 4-really interesting new gene (RING) E3 ubiquitin ligase complex CRL4CRBN as discussed by the authors .

4 citations