scispace - formally typeset
Search or ask a question
Author

Sangam Shrestha

Bio: Sangam Shrestha is an academic researcher from Asian Institute of Technology. The author has contributed to research in topics: Climate change & Drainage basin. The author has an hindex of 33, co-authored 179 publications receiving 4373 citations. Previous affiliations of Sangam Shrestha include Stockholm Environment Institute & University of Yamanashi.


Papers
More filters
Journal ArticleDOI
TL;DR: This study illustrates the usefulness of multivariate statistical techniques for analysis and interpretation of complex data sets, and in water quality assessment, identification of pollution sources/factors and understanding temporal/spatial variations in waterquality for effective river water quality management.
Abstract: Multivariate statistical techniques, such as cluster analysis (CA), principal component analysis (PCA), factor analysis (FA) and discriminant analysis (DA), were applied for the evaluation of temporal/spatial variations and the interpretation of a large complex water quality data set of the Fuji river basin, generated during 8 years (1995–2002) monitoring of 12 parameters at 13 different sites (14 976 observations). Hierarchical cluster analysis grouped 13 sampling sites into three clusters, i.e., relatively less polluted (LP), medium polluted (MP) and highly polluted (HP) sites, based on the similarity of water quality characteristics. Factor analysis/principal component analysis, applied to the data sets of the three different groups obtained from cluster analysis, resulted in five, five and three latent factors explaining 73.18, 77.61 and 65.39% of the total variance in water quality data sets of LP, MP and HP areas, respectively. The varifactors obtained from factor analysis indicate that the parameters responsible for water quality variations are mainly related to discharge and temperature (natural), organic pollution (point source: domestic wastewater) in relatively less polluted areas; organic pollution (point source: domestic wastewater) and nutrients (non-point sources: agriculture and orchard plantations) in medium polluted areas; and organic pollution and nutrients (point sources: domestic wastewater, wastewater treatment plants and industries) in highly polluted areas in the basin. Discriminant analysis gave the best results for both spatial and temporal analysis. It provided an important data reduction as it uses only six parameters (discharge, temperature, dissolved oxygen, biochemical oxygen demand, electrical conductivity and nitrate nitrogen), affording more than 85% correct assignations in temporal analysis, and seven parameters (discharge, temperature, biochemical oxygen demand, pH, electrical conductivity, nitrate nitrogen and ammonical nitrogen), affording more than 81% correct assignations in spatial analysis, of three different sampling sites of the basin. Therefore, DA allowed a reduction in the dimensionality of the large data set, delineating a few indicator parameters responsible for large variations in water quality. Thus, this study illustrates the usefulness of multivariate statistical techniques for analysis and interpretation of complex data sets, and in water quality assessment, identification of pollution sources/factors and understanding temporal/spatial variations in water quality for effective river water quality management.

1,481 citations

Journal ArticleDOI
TL;DR: In this paper, the authors identify groundwater potential zones in the Comoro watershed, using geographical information systems and remote sensing and analytic hierarchy process technique, and validate with the recorded bore well yield data.
Abstract: Groundwater plays an important role for socio-economic development of Comoro watershed in Timor Leste. Despite the significance of groundwater for sustainable development, it has not always been properly managed in the watershed. Therefore, this study seeks to identify groundwater potential zones in the Comoro watershed, using geographical information systems and remote sensing and analytic hierarchy process technique. The groundwater potential zones thus obtained were divided into five classes and validated with the recorded bore well yield data. It was found that the alluvial plain in the northwest along the Comoro River has very high groundwater potential zone which covers about 5.4 % (13.5 km2) area of the watershed. The high groundwater potential zone was found in the eastern part and along the foothills and covers about 4.8 % (12 km2) of the area; moderate zone covers about 2.0 % (5 km2) of the area and found in the higher elevation of the alluvial plain. The poor and very poor groundwater potential zone covers about 87.8 % (219.5 km2) of the watershed. The hilly terrain located in the southern and central parts of the study area has a poor groundwater potential zone due to higher degree of slope and low permeability of conglomerate soil type. The demarcation of groundwater potential zones in the Comoro watershed will be helpful for future planning, development and management of the groundwater resources.

192 citations

Journal ArticleDOI
01 Oct 2019-Catena
TL;DR: In this paper, the authors evaluated the SWAT model performance uncertainty associated with the number of sub-basins, HRUs, and elevation bands and quantified the impact of climate change on streamflows in the Tamor River Basin.
Abstract: The water resources of Tamor River Basin in the eastern Himalayas of Nepal is heavily tapped for agricultural water use and hydropower production. Several studies show that the hydrology of the Himalayan River Basins is vulnerable to climate change. Topographical variations, data scarcity and its complex climate have always been barriers to achieving realistic simulation of the hydrological regime in the Himalayan River Basins, and the Tamor River Basin is no different. In hydrological response unit (HRU) based models, fixing the number of HRUs and sub-basins has a tendency towards confusion. This is especially true in regions with altitudinal and climatic variations. Therefore, this study aims to evaluate the SWAT model performance uncertainty associated with the number of sub-basins, HRUs, and elevation bands and quantify the impact of climate change on streamflows in the Tamor River Basin. Future climate scenarios were developed for three different time frames, the 2030s, 2060s, and 2080s, based on an ensemble of Coupled Model Intercomparison Project Phase 5 (CMIP5) and four Regional Climate Models (RCMs) under the Representative Concentration Pathways (RCP4.5 and RCP8.5) scenarios. The linear scaling method (LSM) of bias correction was used to bias-correct the climate data and then fed into the SWAT model to simulate the future streamflows of the basin. An increase in the annual average maximum temperature (+4 °C) and minimum temperature (+5.5 °C), and a decrease in precipitation (−4.5%) is projected by the end of the twenty-first century under RCP8.5 scenarios. The study found that the future climate could decrease the streamflow by over 8.5% during the twenty-first century under RCP8.5 scenarios. The results show elevation bands (EBs) to be more significant compared to HRUs and sub-basins (SBs) in getting a robust hydrological model in the Himalayan region. The estimates prepared in this study would be beneficial for hydropower developers, planners and policymakers, and water resource managers in developing adaptation strategies to offset the negative impact of climate change in the Tamor River Basin.

138 citations

Journal ArticleDOI
TL;DR: It was found that more than 50% of the groundwater basin area in the valley is susceptible to groundwater pollution and these areas are mostly in Northern groundwater district Low and very low vulnerable areas account for only 13% and are located in Central and Southern groundwater districts.

133 citations

Journal ArticleDOI
TL;DR: Although landuse change is found to be the less afflicting agent, its role should not be overlooked-it may very well further exacerbate the situation if there is a greater unfavourable climatic variation than projected.

128 citations


Cited by
More filters
Journal Article
TL;DR: In this paper, a documento: "Cambiamenti climatici 2007: impatti, adattamento e vulnerabilita" voteato ad aprile 2007 dal secondo gruppo di lavoro del Comitato Intergovernativo sui Cambiamentsi Climatici (Intergovernmental Panel on Climate Change).
Abstract: Impatti, adattamento e vulnerabilita Le cause e le responsabilita dei cambiamenti climatici sono state trattate sul numero di ottobre della rivista Cda. Approfondiamo l’argomento presentando il documento: “Cambiamenti climatici 2007: impatti, adattamento e vulnerabilita” votato ad aprile 2007 dal secondo gruppo di lavoro del Comitato Intergovernativo sui Cambiamenti Climatici (Intergovernmental Panel on Climate Change). Si tratta del secondo di tre documenti che compongono il quarto rapporto sui cambiamenti climatici.

3,979 citations

01 Jan 2015
TL;DR: The work of the IPCC Working Group III 5th Assessment report as mentioned in this paper is a comprehensive, objective and policy neutral assessment of the current scientific knowledge on mitigating climate change, which has been extensively reviewed by experts and governments to ensure quality and comprehensiveness.
Abstract: The talk with present the key results of the IPCC Working Group III 5th assessment report. Concluding four years of intense scientific collaboration by hundreds of authors from around the world, the report responds to the request of the world's governments for a comprehensive, objective and policy neutral assessment of the current scientific knowledge on mitigating climate change. The report has been extensively reviewed by experts and governments to ensure quality and comprehensiveness.

3,224 citations

Book ChapterDOI
01 Jan 2008
TL;DR: The Future of Drylands (FOD) conference as mentioned in this paper is an international scientific conference dedicated to science, education, culture and communication in arid and semi-arid zones.
Abstract: On behalf of Mr. Koichiro Matsuura, Director-General of UNESCO, it is my great pleasure to welcome you all to this international scientific conference. Drylands are often considered fragile ecosystems, yet they have a remarkable resilience to stress. They are home to unique and well-adapted plant and animal species that we need to conserve. Some of the world’s greatest cultures and belief systems have originated in drylands. On the other hand, desertification and land degradation in drylands often result in poverty and cause environmental refugees to abandon their homes. These problems can only be addressed in a holistic manner, based on sound scientific research and findings. Solutions to the problems of dryland degradation need to be communicated as widely as possible through education at all levels. These are many reasons why UNESCO – within its mandate of science, education, culture and communication – took the intiative to organize this conference. And we are glad that so many partners have responded to our call. UNESCO considers this conference as its main contribution to the observance of the International Year of Deserts and Desertification in 2006. We have deliberately chosen the title ‘The Future of Drylands’ as we feel it is time to redefine our priorities for science, education and governance in the drylands based on 50 years of scientific research in arid and semi-arid zones. In fact UNESCO has one of the longest traditions, within the UN system, of addressing dryland problems from an interdisciplinary, scientific point of view. In 1955, the ‘International Arid Land Meetings’ were held in Socorro, New Mexico (USA). They were organized by the American Association for the Advancement of Science (AAAS), sponsored by UNESCO and supported by the Rockefeller Foundation. One important output of the International Arid Land Meetings was a book entitled The Future of Drylands, edited by Gilbert F. White and published in

1,199 citations

01 Dec 2012
Abstract: We upscaled FLUXNET observations of carbon dioxide, water, and energy fluxes to the global scale using the machine learning technique, model tree ensembles (MTE). We trained MTE to predict site-level gross primary productivity (GPP), terrestrial ecosystem respiration (TER), net ecosystem exchange (NEE), latent energy (LE), and sensible heat (H) based on remote sensing indices, climate and meteorological data, and information on land use. We applied the trained MTEs to generate global flux fields at a 0.5 degrees x 0.5 degrees spatial resolution and a monthly temporal resolution from 1982 to 2008. Cross-validation analyses revealed good performance of MTE in predicting among-site flux variability with modeling efficiencies (MEf) between 0.64 and 0.84, except for NEE (MEf = 0.32). Performance was also good for predicting seasonal patterns (MEf between 0.84 and 0.89, except for NEE (0.64)). By comparison, predictions of monthly anomalies were not as strong (MEf between 0.29 and 0.52). Improved accounting of disturbance and lagged environmental effects, along with improved characterization of errors in the training data set, would contribute most to further reducing uncertainties. Our global estimates of LE (158 +/- 7 J x 10(18) yr(-1)), H (164 +/- 15 J x 10(18) yr(-1)), and GPP (119 +/- 6 Pg C yr(-1)) were similar to independent estimates. Our global TER estimate (96 +/- 6 Pg C yr(-1)) was likely underestimated by 5-10%. Hot spot regions of interannual variability in carbon fluxes occurred in semiarid to semihumid regions and were controlled by moisture supply. Overall, GPP was more important to interannual variability in NEE than TER. Our empirically derived fluxes may be used for calibration and evaluation of land surface process models and for exploratory and diagnostic assessments of the biosphere.

948 citations