scispace - formally typeset
Search or ask a question
Author

Sangeeta Kale

Bio: Sangeeta Kale is an academic researcher from Defence Institute of Advanced Technology. The author has contributed to research in topics: Thin film & Drug delivery. The author has an hindex of 32, co-authored 117 publications receiving 3977 citations. Previous affiliations of Sangeeta Kale include Fergusson College & University of Maryland, College Park.


Papers
More filters
Journal ArticleDOI
TL;DR: The occurrence of room temperature ferromagnetism is demonstrated in pulsed laser deposited thin films of Sn(1-x)Co(x)O(2-delta) (x<0.3) and a giant magnetic moment of 7.5+/-0.5 micro(B)/Co, not yet reported in any diluted magnetic semiconductor system.
Abstract: The occurrence of room temperature ferromagnetism is demonstrated in pulsed laser deposited thin films of Sn(1-x)Co(x)O(2-delta) (x<0.3). Interestingly, films of Sn(0.95)Co(0.05)O(2-delta) grown on R-plane sapphire not only exhibit ferromagnetism with a Curie temperature close to 650 K, but also a giant magnetic moment of 7.5+/-0.5 micro(B)/Co, not yet reported in any diluted magnetic semiconductor system. The films are semiconducting and optically highly transparent.

803 citations

Journal ArticleDOI
TL;DR: This is the first report on the synthesis of silver nanoparticles by reduction of aqueous Ag+ ions using D. bulbifera tuber extract and its synergistic potential for enhancement of the antibacterial activity of broad spectrum antimicrobial agents is estimated.
Abstract: Background Development of an environmentally benign process for the synthesis of silver nanomaterials is an important aspect of current nanotechnology research. Among the 600 species of the genus Dioscorea, Dioscorea bulbifera has profound therapeutic applications due to its unique phytochemistry. In this paper, we report on the rapid synthesis of silver nanoparticles by reduction of aqueous Ag+ ions using D. bulbifera tuber extract.Methods and results Phytochemical analysis revealed that D. bulbifera tuber extract is rich in flavonoid, phenolics, reducing sugars, starch, diosgenin, ascorbic acid, and citric acid. The biosynthesis process was quite fast, and silver nanoparticles were formed within 5 hours. Ultraviolet-visible absorption spectroscopy, transmission electron microscopy, high-resolution transmission electron microscopy, energy dispersive spectroscopy, and x-ray diffraction confirmed reduction of the Ag+ ions. Varied morphology of the bioreduced silver nanoparticles included spheres, triangles, and hexagons. Optimization studies revealed that the maximum rate of synthesis could be achieved with 0.7 mM AgNO3 solution at 50°C in 5 hours. The resulting silver nanoparticles were found to possess potent antibacterial activity against both Gram-negative and Gram-positive bacteria. Beta-lactam (piperacillin) and macrolide (eryth-romycin) antibiotics showed a 3.6-fold and 3-fold increase, respectively, in combination with silver nanoparticles selectively against multidrug-resistant Acinetobacter baumannii. Notable synergy was seen between silver nanoparticles and chloramphenicol or vancomycin against Pseudomonas aeruginosa, and was supported by a 4.9-fold and 4.2-fold increase in zone diameter, respectively. Similarly, we found a maximum 11.8-fold increase in zone diameter of streptomycin when combined with silver nanoparticles against E. coli, providing strong evidence for the synergistic action of a combination of antibiotics and silver nanoparticles.

417 citations

Journal ArticleDOI
TL;DR: The elaborate experimental evidences support that GGFE can provide an environmentally benign rapid route for synthesis of AuNPs that can be applied for various purposes.
Abstract: Background: Novel approaches for synthesis of gold nanoparticles (AuNPs) are of utmost importance owing to its immense applications in diverse fields including catalysis, optics, medical diagnostics and therapeutics. We report on synthesis of AuNPs using Gnidia glauca flower extract (GGFE), its detailed characterization and evaluation of its chemocatalytic potential. Results: Synthesis of AuNPs using GGFE was monitored by UV-Vis spectroscopy and was found to be rapid that completed within 20 min. The concentration of chloroauric acid and temperature was optimized to be 0.7 mM and 50°C respectively. Bioreduced nanoparticles varied in morphology from nanotriangles to nanohexagons majority being spherical. AuNPs were characterized employing transmission electron microscopy, high resolution transmission electron microscopy. Confirmation of elemental gold was carried out by elemental mapping in scanning transmission electron microscopic mode, energy dispersive spectroscopy and X-ray diffraction studies. Spherical particles of size ~10 nm were found in majority. However, particles of larger dimensions were in range between 50-150 nm. The bioreduced AuNPs exhibited remarkable catalytic properties in a reduction reaction of 4-nitrophenol to 4-aminophenol by NaBH4 in aqueous phase. Conclusion: The elaborate experimental evidences support that GGFE can provide an environmentally benign rapid route for synthesis of AuNPs that can be applied for various purposes. Biogenic AuNPs synthesized using GGFE exhibited excellent chemocatalytic potential.

187 citations

Journal ArticleDOI
TL;DR: In this article, a magnetic field sensor combining photonic crystal fiber and optofluidics was presented. But they used a single platform by infiltrating a small amount of Fe3O4 magnetic optorluid/nanofluide in cladding holes of polarization-maintaining photonic fiber.
Abstract: We report a magnetic field sensor having advantages of both photonic crystal fiber and optofluidics, combining them on a single platform by infiltrating small amount of Fe3O4 magnetic optofluid/nanofluid in cladding holes of polarization-maintaining photonic crystal fiber We demonstrated that magnetic field of few mT can be easily and very well detected with higher sensitivity of 242 pm/mT The change in the birefringence values has been correlated to the response of nanofluid to applied field

168 citations

Journal ArticleDOI
TL;DR: In this paper, water-soluble magnetite nanoparticles have been directly synthesized by thermal decomposition of iron (III) acetylacetonate, Fe(acac)3 in tri(ethyleneglycol).

150 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
09 Sep 2016-Science
TL;DR: The mechanical flexibility and easy coating capability offered by MXenes and their composites enable them to shield surfaces of any shape while providing high EMI shielding efficiency.
Abstract: Materials with good flexibility and high conductivity that can provide electromagnetic interference (EMI) shielding with minimal thickness are highly desirable, especially if they can be easily processed into films. Two-dimensional metal carbides and nitrides, known as MXenes, combine metallic conductivity and hydrophilic surfaces. Here, we demonstrate the potential of several MXenes and their polymer composites for EMI shielding. A 45-micrometer-thick Ti3C2Tx film exhibited EMI shielding effectiveness of 92 decibels (>50 decibels for a 2.5-micrometer film), which is the highest among synthetic materials of comparable thickness produced to date. This performance originates from the excellent electrical conductivity of Ti3C2Tx films (4600 Siemens per centimeter) and multiple internal reflections from Ti3C2Tx flakes in free-standing films. The mechanical flexibility and easy coating capability offered by MXenes and their composites enable them to shield surfaces of any shape while providing high EMI shielding efficiency.

3,251 citations

Journal ArticleDOI
TL;DR: It is proposed thatferromagnetic exchange here, and in dilute ferromagnetic nitrides, is mediated by shallow donor electrons that form bound magnetic polarons, which overlap to create a spin-split impurity band.
Abstract: Dilute ferromagnetic oxides having Curie temperatures far in excess of 300 K and exceptionally large ordered moments per transition-metal cation challenge our understanding of magnetism in solids. These materials are high-k dielectrics with degenerate or thermally activated n-type semiconductivity. Conventional super-exchange or double-exchange interactions cannot produce long-range magnetic order at concentrations of magnetic cations of a few percent. We propose that ferromagnetic exchange here, and in dilute ferromagnetic nitrides, is mediated by shallow donor electrons that form bound magnetic polarons, which overlap to create a spin-split impurity band. The Curie temperature in the mean-field approximation varies as (xdelta)(1/2) where x and delta are the concentrations of magnetic cations and donors, respectively. High Curie temperatures arise only when empty minority-spin or majority-spin d states lie at the Fermi level in the impurity band. The magnetic phase diagram includes regions of semiconducting and metallic ferromagnetism, cluster paramagnetism, spin glass and canted antiferromagnetism.

2,743 citations

Journal ArticleDOI
TL;DR: A review of surface science studies of single crystal surfaces, but selected studies on powder and polycrystalline films are also incorporated in order to provide connecting points between surface sciences studies with the broader field of materials science of tin oxide as discussed by the authors.

2,232 citations

Journal ArticleDOI
TL;DR: The methods of making nanoparticles using plant extracts are reviewed, methods of particle characterization are reviewed and potential applications of the particles in medicine are discussed.

1,706 citations