scispace - formally typeset
Search or ask a question
Author

Sangeeta Sharma

Bio: Sangeeta Sharma is an academic researcher from Max Planck Society. The author has contributed to research in topics: Density functional theory & Physics. The author has an hindex of 30, co-authored 149 publications receiving 4202 citations. Previous affiliations of Sangeeta Sharma include Free University of Berlin & Fritz Haber Institute of the Max Planck Society.


Papers
More filters
Journal ArticleDOI
Kurt Lejaeghere1, Gustav Bihlmayer2, Torbjörn Björkman3, Torbjörn Björkman4, Peter Blaha5, Stefan Blügel2, Volker Blum6, Damien Caliste7, Ivano E. Castelli8, Stewart J. Clark9, Andrea Dal Corso10, Stefano de Gironcoli10, Thierry Deutsch7, J. K. Dewhurst11, Igor Di Marco12, Claudia Draxl13, Claudia Draxl14, Marcin Dulak15, Olle Eriksson12, José A. Flores-Livas11, Kevin F. Garrity16, Luigi Genovese7, Paolo Giannozzi17, Matteo Giantomassi18, Stefan Goedecker19, Xavier Gonze18, Oscar Grånäs12, Oscar Grånäs20, E. K. U. Gross11, Andris Gulans13, Andris Gulans14, Francois Gygi21, D. R. Hamann22, P. J. Hasnip23, Natalie Holzwarth24, Diana Iusan12, Dominik B. Jochym25, F. Jollet, Daniel M. Jones26, Georg Kresse27, Klaus Koepernik28, Klaus Koepernik29, Emine Kucukbenli8, Emine Kucukbenli10, Yaroslav Kvashnin12, Inka L. M. Locht30, Inka L. M. Locht12, Sven Lubeck13, Martijn Marsman27, Nicola Marzari8, Ulrike Nitzsche28, Lars Nordström12, Taisuke Ozaki31, Lorenzo Paulatto32, Chris J. Pickard33, Ward Poelmans1, Matt Probert23, Keith Refson34, Keith Refson25, Manuel Richter28, Manuel Richter29, Gian-Marco Rignanese18, Santanu Saha19, Matthias Scheffler35, Matthias Scheffler14, Martin Schlipf21, Karlheinz Schwarz5, Sangeeta Sharma11, Francesca Tavazza16, Patrik Thunström5, Alexandre Tkatchenko14, Alexandre Tkatchenko36, Marc Torrent, David Vanderbilt22, Michiel van Setten18, Veronique Van Speybroeck1, John M. Wills37, Jonathan R. Yates26, Guo-Xu Zhang38, Stefaan Cottenier1 
25 Mar 2016-Science
TL;DR: A procedure to assess the precision of DFT methods was devised and used to demonstrate reproducibility among many of the most widely used DFT codes, demonstrating that the precisionof DFT implementations can be determined, even in the absence of one absolute reference code.
Abstract: The widespread popularity of density functional theory has given rise to an extensive range of dedicated codes for predicting molecular and crystalline properties. However, each code implements the formalism in a different way, raising questions about the reproducibility of such predictions. We report the results of a community-wide effort that compared 15 solid-state codes, using 40 different potentials or basis set types, to assess the quality of the Perdew-Burke-Ernzerhof equations of state for 71 elemental crystals. We conclude that predictions from recent codes and pseudopotentials agree very well, with pairwise differences that are comparable to those between different high-precision experiments. Older methods, however, have less precise agreement. Our benchmark provides a framework for users and developers to document the precision of new applications and methodological improvements.

1,141 citations

Journal ArticleDOI
TL;DR: In this paper, the rotational degree of freedom between graphene layers via the simple prototype of the graphene twist bilayer was explored, i.e., two layers rotated by some angle, and it was shown that many features of this system can be understood by interference conditions between the quantum states of the two layers, expressed as Diophantine problems.
Abstract: We explore the rotational degree of freedom between graphene layers via the simple prototype of the graphene twist bilayer, i.e., two layers rotated by some angle $\ensuremath{\theta}$. It is shown that, due to the weak interaction between graphene layers, many features of this system can be understood by interference conditions between the quantum states of the two layers, mathematically expressed as Diophantine problems. Based on this general analysis we demonstrate that while the Dirac cones from each layer are always effectively degenerate, the Fermi velocity ${v}_{F}$ of the Dirac cones decreases as $\ensuremath{\theta}\ensuremath{\rightarrow}0\ifmmode^\circ\else\textdegree\fi{}$; the form we derive for ${v}_{F}(\ensuremath{\theta})$ agrees with that found via a continuum approximation in [J. M. B. Lopes dos Santos, N. M. R. Peres, and A. H. Castro Neto, Phys. Rev. Lett. 99, 256802 (2007)]. From tight-binding calculations for structures with $1.47\ifmmode^\circ\else\textdegree\fi{}\ensuremath{\le}\ensuremath{\theta}l30\ifmmode^\circ\else\textdegree\fi{}$ we find agreement with this formula for $\ensuremath{\theta}\ensuremath{\gtrsim}5\ifmmode^\circ\else\textdegree\fi{}$. In contrast, for $\ensuremath{\theta}\ensuremath{\lesssim}5\ifmmode^\circ\else\textdegree\fi{}$ this formula breaks down and the Dirac bands become strongly warped as the limit $\ensuremath{\theta}\ensuremath{\rightarrow}0$ is approached. For an ideal system of twisted layers the limit as $\ensuremath{\theta}\ensuremath{\rightarrow}0\ifmmode^\circ\else\textdegree\fi{}$ is singular as for $\ensuremath{\theta}g0$ the Dirac point is fourfold degenerate, while at $\ensuremath{\theta}=0$ one has the twofold degeneracy of the $AB$ stacked bilayer. Interestingly, in this limit the electronic properties are in an essential way determined globally, in contrast to the ``nearsightedness'' [W. Kohn, Phys. Rev. Lett. 76, 3168 (1996)] of electronic structure generally found in condensed matter.

387 citations

Journal ArticleDOI
26 Jun 2019-Nature
TL;DR: This study unveils light-field coherent control of spin dynamics and macroscopic magnetic moments in the initial non-dissipative temporal regime and establishes optical frequencies as the speed limit of future coherent spintronic applications, spin transistors and data storage media.
Abstract: The enigmatic interplay between electronic and magnetic phenomena observed in many early experiments and outlined in Maxwell’s equations propelled the development of modern electromagnetism1. Today, the fully controlled evolution of the electric field of ultrashort laser pulses enables the direct and ultrafast tuning of the electronic properties of matter, which is the cornerstone of light-wave electronics2–7. By contrast, owing to the lack of first-order interaction between light and spin, the magnetic properties of matter can only be affected indirectly and on much longer timescales, through a sequence of optical excitations and subsequent rearrangement of the spin structure8–16. Here we introduce the regime of ultrafast coherent magnetism and show how the magnetic properties of a ferromagnetic layer stack can be manipulated directly by the electric-field oscillations of light, reducing the magnetic response time to an external stimulus by two orders of magnitude. To track the unfolding dynamics in real time, we develop an attosecond time-resolved magnetic circular dichroism detection scheme, revealing optically induced spin and orbital momentum transfer in synchrony with light-field-driven coherent charge relocation17. In tandem with ab initio quantum dynamical modelling, we show how this mechanism enables the simultaneous control of electronic and magnetic properties that are essential for spintronic functionality. Our study unveils light-field coherent control of spin dynamics and macroscopic magnetic moments in the initial non-dissipative temporal regime and establishes optical frequencies as the speed limit of future coherent spintronic applications, spin transistors and data storage media. The magnetic properties of a ferromagnetic layer stack are controlled on attosecond timescales through optically induced spin and orbital momentum transfer, demonstrating a coherent regime of ultrafast magnetism.

187 citations

Journal ArticleDOI
TL;DR: From first-principles calculations, it is determined that even for the smallest possible commensuration cell the decoupling is effectively perfect, and thus graphene layers will be seen to decouple for all rotation angles.
Abstract: We explore the consequences of a rotation between graphene layers for the electronic spectrum We derive the commensuration condition in real space and show that the interlayer electronic coupling is governed by an equivalent commensuration in reciprocal space The larger the commensuration cell, the weaker the interlayer coupling, with exact decoupling for incommensurate rotations and in the theta-->0 limit Furthermore, from first-principles calculations we determine that even for the smallest possible commensuration cell the decoupling is effectively perfect, and thus graphene layers will be seen to decouple for all rotation angles

185 citations

Journal ArticleDOI
TL;DR: It is demonstrated that this form of demagnetization is a two-step process: excitation of a fraction of electrons followed by spin-flip transitions mediated by spin–orbit coupling of the remaining localized electrons and it is possible to control the moment loss by tunable laser parameters, including frequency, duration, and intensity.
Abstract: Time-dependent density functional theory (TDDFT) is implemented in an all electron solid-state code for the case of fully unconstrained noncollinear spins. We use this to study intense, short, laser pulse-induced demagnetization in bulk Fe, Co, Ni and find that demagnetization can take place on time scales of <20 fs. It is demonstrated that this form of demagnetization is a two-step process: excitation of a fraction of electrons followed by spin-flip transitions mediated by spin–orbit coupling of the remaining localized electrons. We further show that it is possible to control the moment loss by tunable laser parameters, including frequency, duration, and intensity.

178 citations


Cited by
More filters
Journal ArticleDOI
05 Mar 2018-Nature
TL;DR: The realization of intrinsic unconventional superconductivity is reported—which cannot be explained by weak electron–phonon interactions—in a two-dimensional superlattice created by stacking two sheets of graphene that are twisted relative to each other by a small angle.
Abstract: The behaviour of strongly correlated materials, and in particular unconventional superconductors, has been studied extensively for decades, but is still not well understood. This lack of theoretical understanding has motivated the development of experimental techniques for studying such behaviour, such as using ultracold atom lattices to simulate quantum materials. Here we report the realization of intrinsic unconventional superconductivity-which cannot be explained by weak electron-phonon interactions-in a two-dimensional superlattice created by stacking two sheets of graphene that are twisted relative to each other by a small angle. For twist angles of about 1.1°-the first 'magic' angle-the electronic band structure of this 'twisted bilayer graphene' exhibits flat bands near zero Fermi energy, resulting in correlated insulating states at half-filling. Upon electrostatic doping of the material away from these correlated insulating states, we observe tunable zero-resistance states with a critical temperature of up to 1.7 kelvin. The temperature-carrier-density phase diagram of twisted bilayer graphene is similar to that of copper oxides (or cuprates), and includes dome-shaped regions that correspond to superconductivity. Moreover, quantum oscillations in the longitudinal resistance of the material indicate the presence of small Fermi surfaces near the correlated insulating states, in analogy with underdoped cuprates. The relatively high superconducting critical temperature of twisted bilayer graphene, given such a small Fermi surface (which corresponds to a carrier density of about 1011 per square centimetre), puts it among the superconductors with the strongest pairing strength between electrons. Twisted bilayer graphene is a precisely tunable, purely carbon-based, two-dimensional superconductor. It is therefore an ideal material for investigations of strongly correlated phenomena, which could lead to insights into the physics of high-critical-temperature superconductors and quantum spin liquids.

5,613 citations

Journal ArticleDOI
TL;DR: Recent extensions and improvements are described, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.
Abstract: Quantum ESPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudopotential and projector-augmented-wave approaches Quantum ESPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement their ideas In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software

3,638 citations

Journal ArticleDOI
TL;DR: Quantum ESPRESSO as discussed by the authors is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density functional theory, density functional perturbation theory, and many-body perturbations theory, within the plane-wave pseudo-potential and projector-augmented-wave approaches.
Abstract: Quantum ESPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudo-potential and projector-augmented-wave approaches. Quantum ESPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement theirs ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.

2,818 citations

Journal ArticleDOI
TL;DR: This work addresses the electronic structure of a twisted two-layer graphene system, showing that in its continuum Dirac model the moiré pattern periodicity leads to moirÉ Bloch bands.
Abstract: A moire pattern is formed when two copies of a periodic pattern are overlaid with a relative twist. We address the electronic structure of a twisted two-layer graphene system, showing that in its continuum Dirac model the moire pattern periodicity leads to moire Bloch bands. The two layers become more strongly coupled and the Dirac velocity crosses zero several times as the twist angle is reduced. For a discrete set of magic angles the velocity vanishes, the lowest moire band flattens, and the Dirac-point density-of-states and the counterflow conductivity are strongly enhanced.

2,323 citations

Journal ArticleDOI
26 Jul 2018-Nature
TL;DR: A future in which the design, synthesis, characterization and application of molecules and materials is accelerated by artificial intelligence is envisaged.
Abstract: Here we summarize recent progress in machine learning for the chemical sciences. We outline machine-learning techniques that are suitable for addressing research questions in this domain, as well as future directions for the field. We envisage a future in which the design, synthesis, characterization and application of molecules and materials is accelerated by artificial intelligence.

2,295 citations