scispace - formally typeset
Search or ask a question
Author

Sanghyuk Chun

Bio: Sanghyuk Chun is an academic researcher from Naver Corporation. The author has contributed to research in topics: Computer science & Font. The author has an hindex of 15, co-authored 38 publications receiving 1674 citations.

Papers published on a yearly basis

Papers
More filters
Proceedings ArticleDOI
07 Aug 2019
TL;DR: CutMix as discussed by the authors augments the training data by cutting and pasting patches among training images, where the ground truth labels are also mixed proportionally to the area of the patches.
Abstract: Regional dropout strategies have been proposed to enhance performance of convolutional neural network classifiers. They have proved to be effective for guiding the model to attend on less discriminative parts of objects (e.g. leg as opposed to head of a person), thereby letting the network generalize better and have better object localization capabilities. On the other hand, current methods for regional dropout removes informative pixels on training images by overlaying a patch of either black pixels or random noise. Such removal is not desirable because it suffers from information loss causing inefficiency in training. We therefore propose the CutMix augmentation strategy: patches are cut and pasted among training images where the ground truth labels are also mixed proportionally to the area of the patches. By making efficient use of training pixels and retaining the regularization effect of regional dropout, CutMix consistently outperforms state-of-the-art augmentation strategies on CIFAR and ImageNet classification tasks, as well as on ImageNet weakly-supervised localization task. Moreover, unlike previous augmentation methods, our CutMix-trained ImageNet classifier, when used as a pretrained model, results in consistent performance gain in Pascal detection and MS-COCO image captioning benchmarks. We also show that CutMix can improve the model robustness against input corruptions and its out-of distribution detection performance.

3,013 citations

Posted Content
TL;DR: Patches are cut and pasted among training images where the ground truth labels are also mixed proportionally to the area of the patches, and CutMix consistently outperforms state-of-the-art augmentation strategies on CIFAR and ImageNet classification tasks, as well as on ImageNet weakly-supervised localization task.
Abstract: Regional dropout strategies have been proposed to enhance the performance of convolutional neural network classifiers. They have proved to be effective for guiding the model to attend on less discriminative parts of objects (e.g. leg as opposed to head of a person), thereby letting the network generalize better and have better object localization capabilities. On the other hand, current methods for regional dropout remove informative pixels on training images by overlaying a patch of either black pixels or random noise. Such removal is not desirable because it leads to information loss and inefficiency during training. We therefore propose the CutMix augmentation strategy: patches are cut and pasted among training images where the ground truth labels are also mixed proportionally to the area of the patches. By making efficient use of training pixels and retaining the regularization effect of regional dropout, CutMix consistently outperforms the state-of-the-art augmentation strategies on CIFAR and ImageNet classification tasks, as well as on the ImageNet weakly-supervised localization task. Moreover, unlike previous augmentation methods, our CutMix-trained ImageNet classifier, when used as a pretrained model, results in consistent performance gains in Pascal detection and MS-COCO image captioning benchmarks. We also show that CutMix improves the model robustness against input corruptions and its out-of-distribution detection performances. Source code and pretrained models are available at this https URL .

204 citations

Proceedings ArticleDOI
01 Oct 2019
TL;DR: Wang et al. as mentioned in this paper proposed a wavelet corrected transfer based on whitening and coloring transforms (WCT2) that allows features to preserve their structural information and statistical properties of VGG feature space during stylization.
Abstract: Recent style transfer models have provided promising artistic results. However, given a photograph as a reference style, existing methods are limited by spatial distortions or unrealistic artifacts, which should not happen in real photographs. We introduce a theoretically sound correction to the network architecture that remarkably enhances photorealism and faithfully transfers the style. The key ingredient of our method is wavelet transforms that naturally fits in deep networks. We propose a wavelet corrected transfer based on whitening and coloring transforms (WCT2) that allows features to preserve their structural information and statistical properties of VGG feature space during stylization. This is the first and the only end-to-end model that can stylize a 1024x1024 resolution image in 4.7 seconds, giving a pleasing and photorealistic quality without any post-processing. Last but not least, our model provides a stable video stylization without temporal constraints. Our code, generated images, pre-trained models and supplementary documents are all available at https://github.com/ClovaAI/WCT2.

197 citations

Posted Content
TL;DR: This work proposes a wavelet corrected transfer based on whitening and coloring transforms (WCT2) that allows features to preserve their structural information and statistical properties of VGG feature space during stylization and provides a stable video stylization without temporal constraints.
Abstract: Recent style transfer models have provided promising artistic results. However, given a photograph as a reference style, existing methods are limited by spatial distortions or unrealistic artifacts, which should not happen in real photographs. We introduce a theoretically sound correction to the network architecture that remarkably enhances photorealism and faithfully transfers the style. The key ingredient of our method is wavelet transforms that naturally fits in deep networks. We propose a wavelet corrected transfer based on whitening and coloring transforms (WCT$^2$) that allows features to preserve their structural information and statistical properties of VGG feature space during stylization. This is the first and the only end-to-end model that can stylize a $1024\times1024$ resolution image in 4.7 seconds, giving a pleasing and photorealistic quality without any post-processing. Last but not least, our model provides a stable video stylization without temporal constraints. Our code, generated images, and pre-trained models are all available at this https URL.

162 citations

Proceedings Article
12 Jul 2020
TL;DR: This work proposes a novel framework to train a de-biased representation by encouraging it to be different from a set of representations that are biased by design, and demonstrates the efficacy of the method across a variety of synthetic and real-world biases.
Abstract: Many machine learning algorithms are trained and evaluated by splitting data from a single source into training and test sets. While such focus on in-distribution learning scenarios has led to interesting advancement, it has not been able to tell if models are relying on dataset biases as shortcuts for successful prediction (e.g., using snow cues for recognising snowmobiles), resulting in biased models that fail to generalise when the bias shifts to a different class. The cross-bias generalisation problem has been addressed by de-biasing training data through augmentation or re-sampling, which are often prohibitive due to the data collection cost (e.g., collecting images of a snowmobile on a desert) and the difficulty of quantifying or expressing biases in the first place. In this work, we propose a novel framework to train a de-biased representation by encouraging it to be different from a set of representations that are biased by design. This tactic is feasible in many scenarios where it is much easier to define a set of biased representations than to define and quantify bias. We demonstrate the efficacy of our method across a variety of synthetic and real-world biases; our experiments show that the method discourages models from taking bias shortcuts, resulting in improved generalisation. Source code is available at this https URL.

141 citations


Cited by
More filters
Posted Content
TL;DR: This work uses new features: WRC, CSP, CmBN, SAT, Mish activation, Mosaic data augmentation, C mBN, DropBlock regularization, and CIoU loss, and combine some of them to achieve state-of-the-art results: 43.5% AP for the MS COCO dataset at a realtime speed of ~65 FPS on Tesla V100.
Abstract: There are a huge number of features which are said to improve Convolutional Neural Network (CNN) accuracy. Practical testing of combinations of such features on large datasets, and theoretical justification of the result, is required. Some features operate on certain models exclusively and for certain problems exclusively, or only for small-scale datasets; while some features, such as batch-normalization and residual-connections, are applicable to the majority of models, tasks, and datasets. We assume that such universal features include Weighted-Residual-Connections (WRC), Cross-Stage-Partial-connections (CSP), Cross mini-Batch Normalization (CmBN), Self-adversarial-training (SAT) and Mish-activation. We use new features: WRC, CSP, CmBN, SAT, Mish activation, Mosaic data augmentation, CmBN, DropBlock regularization, and CIoU loss, and combine some of them to achieve state-of-the-art results: 43.5% AP (65.7% AP50) for the MS COCO dataset at a realtime speed of ~65 FPS on Tesla V100. Source code is at this https URL

5,709 citations

Posted Content
Ze Liu1, Yutong Lin1, Yue Cao1, Han Hu1, Yixuan Wei1, Zheng Zhang1, Stephen Lin1, Baining Guo1 
TL;DR: Wang et al. as mentioned in this paper proposed a new vision Transformer called Swin Transformer, which is computed with shifted windows to address the differences between the two domains, such as large variations in the scale of visual entities and the high resolution of pixels in images compared to words in text.
Abstract: This paper presents a new vision Transformer, called Swin Transformer, that capably serves as a general-purpose backbone for computer vision. Challenges in adapting Transformer from language to vision arise from differences between the two domains, such as large variations in the scale of visual entities and the high resolution of pixels in images compared to words in text. To address these differences, we propose a hierarchical Transformer whose representation is computed with shifted windows. The shifted windowing scheme brings greater efficiency by limiting self-attention computation to non-overlapping local windows while also allowing for cross-window connection. This hierarchical architecture has the flexibility to model at various scales and has linear computational complexity with respect to image size. These qualities of Swin Transformer make it compatible with a broad range of vision tasks, including image classification (86.4 top-1 accuracy on ImageNet-1K) and dense prediction tasks such as object detection (58.7 box AP and 51.1 mask AP on COCO test-dev) and semantic segmentation (53.5 mIoU on ADE20K val). Its performance surpasses the previous state-of-the-art by a large margin of +2.7 box AP and +2.6 mask AP on COCO, and +3.2 mIoU on ADE20K, demonstrating the potential of Transformer-based models as vision backbones. The code and models will be made publicly available at~\url{this https URL}.

3,518 citations

01 Jan 2006

3,012 citations

Posted Content
TL;DR: In this paper, the authors extend the self-supervised batch contrastive approach to the fully supervised setting, allowing them to effectively leverage label information and achieve state-of-the-art performance in unsupervised training of deep image models.
Abstract: Contrastive learning applied to self-supervised representation learning has seen a resurgence in recent years, leading to state of the art performance in the unsupervised training of deep image models. Modern batch contrastive approaches subsume or significantly outperform traditional contrastive losses such as triplet, max-margin and the N-pairs loss. In this work, we extend the self-supervised batch contrastive approach to the fully-supervised setting, allowing us to effectively leverage label information. Clusters of points belonging to the same class are pulled together in embedding space, while simultaneously pushing apart clusters of samples from different classes. We analyze two possible versions of the supervised contrastive (SupCon) loss, identifying the best-performing formulation of the loss. On ResNet-200, we achieve top-1 accuracy of 81.4% on the ImageNet dataset, which is 0.8% above the best number reported for this architecture. We show consistent outperformance over cross-entropy on other datasets and two ResNet variants. The loss shows benefits for robustness to natural corruptions and is more stable to hyperparameter settings such as optimizers and data augmentations. Our loss function is simple to implement, and reference TensorFlow code is released at this https URL.

1,653 citations