scispace - formally typeset
Search or ask a question
Author

Sanie Ymer

Bio: Sanie Ymer is an academic researcher from Heidelberg University. The author has contributed to research in topics: GABAA receptor & GABAA-rho receptor. The author has an hindex of 7, co-authored 9 publications receiving 2697 citations.

Papers
More filters
Journal ArticleDOI
13 Apr 1989-Nature
TL;DR: The isolation of a cloned cDNA encoding a new GABAA receptor subunit, termed γ2, which shares approximately 40% sequence identity with α-and β-subunits and whose messenger RNA is prominently localized in neuronal subpopulations throughout the CNS.
Abstract: NEUROTRANSMISSION effected by GABA (γ-aminobutyric acid) is predominantly mediated by a gated chloride channel intrinsic to the GABAA receptor. This heterooligomeric receptor1 exists in most inhibitory synapses in the vertebrate central nervous system (CNS) and can be regulated by clinically important compounds such as benzodiazepines and barbiturates2. The primary structures of GABAA receptor α- and β-subunits have been deduced from cloned complementary DNAs3,4. Co-expression of these subunits in heterologous systems generates receptors which display much of the pharmacology of their neural counterparts, including potentiation by barbiturates3–5. Conspicuously, however, they lack binding sites for, and consistent electrophysiological responses to, benzodiazepines4,5. We now report the isolation of a cloned cDNA encoding a new GABAA receptor subunit, termed γ2, which shares approximately 40% sequence identity with α-and β-subunits and whose messenger RNA is prominently localized in neuronal subpopulations throughout the CNS. Importantly, coexpression of the γ2 subunit with α1 and β1 subunits produces GABAA receptors displaying high-affinity binding for central benzodiazepine receptor ligands.

1,334 citations

Journal ArticleDOI
01 Jun 1990-Neuron
TL;DR: GABA-gated chloride channels were expressed in human embryonic kidney cells following transfection of cDNAs encoding the alpha 1, beta 2, and gamma 2 subunits of the rat GABAA receptor (GABAR).

534 citations

Journal ArticleDOI
TL;DR: Northern analysis showed that both beta 2 and beta 3 mRNAs are more abundant in the brain than beta 1 mRNA, which suggests that a variety of related but functionally distinct GABAA receptor subtypes are generated by different subunit combinations.
Abstract: Cloned cDNAs encoding two new beta subunits of the rat and bovine GABAA receptor have been isolated using a degenerate oligonucleotide probe based on a highly conserved peptide sequence in the second transmembrane domain of GABAA receptor subunits. The beta 2 and beta 3 subunits share approximately 72% sequence identity with the previously characterized beta 1 polypeptide. Northern analysis showed that both beta 2 and beta 3 mRNAs are more abundant in the brain than beta 1 mRNA. All three beta subunit encoding cDNAs were also identified in a library constructed from adrenal medulla RNA. Each beta subunit, when co-expressed in Xenopus oocytes with an alpha subunit, forms functional GABAA receptors. These results, together with the known alpha subunit heterogeneity, suggest that a variety of related but functionally distinct GABAA receptor subtypes are generated by different subunit combinations.

420 citations

Journal ArticleDOI
TL;DR: The GABAA receptor gamma 1 subunit of human, rat and bovine origin was molecularly cloned and compared with the gamma 2 subunit in structure and function to reveal a pronounced effect of gamma subunit variants on GAB AA/benzodiazepine receptor pharmacology.
Abstract: The GABAA receptor gamma 1 subunit of human, rat and bovine origin was molecularly cloned and compared with the gamma 2 subunit in structure and function Both gamma subunit variants share 74% sequence similarity and are prominently synthesized in often distinct areas of the central nervous system as documented by in situ hybridization When co-expressed with alpha and beta subunits in Xenopus oocytes and mammalian cells, the gamma variants mediate the potentiation of GABA evoked currents by benzodiazepines and help generate high-affinity binding sites for these drugs However, these sites show disparate pharmacological properties which, for receptors assembled from alpha 1, beta 1 and gamma 1 subunits, are characterized by the conspicuous loss in affinity for neutral antagonists (eg flumazenil) and negative modulators (eg DMCM) These findings reveal a pronounced effect of gamma subunit variants on GABAA/benzodiazepine receptor pharmacology

213 citations

Journal ArticleDOI
TL;DR: Northern analysis indicates that a 4 kb α4 mRNA is expressed in the calf cerebellum, cortex and hippocampus but is barely detectable in the rat brain, and co‐expression of α4 and β1 in Xenopus oocytes resulted in the formation of GABA‐gated chloride channels with expected pharmacology, although no benzodiazepine potentiation was observed.

95 citations


Cited by
More filters
Book ChapterDOI
01 Jan 1996
TL;DR: The action potential is triggered when the membrane potential, which was at the resting level, depolarizes and reaches the threshold of excitation, which triggers the action potential.
Abstract: Excitability. Excitability of cell membranes is crucial for signaling in many types of cell. Excitation in the physiological sense means that the cell membrane potential undergoes characteristic changes which, in most cases, go in the depolarizing direction. Single depolarization from the resting potential to potentials near 0 mV has generally been called an action potential. A schematic representation of a neuronal action potential is given in Fig. 12.1 A. The action potential is triggered when the membrane potential, which was at the resting level, depolarizes and reaches the threshold of excitation. This depolarization, which triggers the action potential, is generated by depolarizing synaptic currents, or depolarizing current coming from a membrane region that is already excited (propagation of an action potential), or by pacemaker currents mediated by pacemaker channels, or by current injected externally by an electrode. The duration of different types of action potential varies from seconds to less than 1 ms.

3,016 citations

Journal ArticleDOI
TL;DR: This review considers the distinct roles of synaptic and extrasynaptic GABA receptor subtypes in the control of neuronal excitability in the adult mammalian brain.
Abstract: The proper functioning of the adult mammalian brain relies on the orchestrated regulation of neural activity by a diverse population of GABA (gamma-aminobutyric acid)-releasing neurons. Until recently, our appreciation of GABA-mediated inhibition focused predominantly on the GABA(A) (GABA type A) receptors located at synaptic contacts, which are activated in a transient or 'phasic' manner by GABA that is released from synaptic vesicles. However, there is growing evidence that low concentrations of ambient GABA can persistently activate certain subtypes of GABA(A) receptor, which are often remote from synapses, to generate a 'tonic' conductance. In this review, we consider the distinct roles of synaptic and extrasynaptic GABA receptor subtypes in the control of neuronal excitability.

1,994 citations

Journal ArticleDOI
TL;DR: This chapter discusses the gamma-aminobutyric acid (GABA) receptor channels, which are the most abundant inhibitory neurotransmitter in the CNS.
Abstract: This chapter discusses the gamma-aminobutyric acid (GABA) receptor channels, which are the most abundant inhibitory neurotransmitter in the CNS. Following release from presynaptic vesicles, GABA exerts fast inhibitory effects by interacting with GABA receptors, whose primary function is to hyperpolarize neuronal membranes in mature CNS neurons. GABA receptors are found both presynaptically, where they decrease the likelihood of neurotransmitter release, and postsynaptically, where they decrease the likelihood of neuronal firing. There are two types of GABA receptor, termed GABA A and GABA B receptors. GABA A receptors are fast-activating Clˉ channels from the Cys-loop family of ligand-gated ion channels. Activation of GABA A receptors causes membrane hyperpolarization by allowing Clˉ influx, reflecting the relatively low concentration of Clˉ found intracellularly in most adult CNS neurons. GABA A receptors can also mediate depolarizing responses in most immature CNS neurons and in mature peripheral neurons.

1,991 citations

Journal ArticleDOI
TL;DR: The expression patterns of 13 GABAA receptor subunit encoding genes (alpha 1-alpha 6, beta 1-beta 3, gamma 1-gamma 3, delta) were determined in adult rat brain by in situ hybridization as discussed by the authors.
Abstract: The expression patterns of 13 GABAA receptor subunit encoding genes (alpha 1-alpha 6, beta 1-beta 3, gamma 1-gamma 3, delta) were determined in adult rat brain by in situ hybridization. Each mRNA displayed a unique distribution, ranging from ubiquitous (alpha 1 mRNA) to narrowly confined (alpha 6 mRNA was present only in cerebellar granule cells). Some neuronal populations coexpressed large numbers of subunit mRNAs, whereas in others only a few GABAA receptor-specific mRNAs were found. Neocortex, hippocampus, and caudate-putamen displayed complex expression patterns, and these areas probably contain a large diversity of GABAA receptors. In many areas, a consistent coexpression was observed for alpha 1 and beta 2 mRNAs, which often colocalized with gamma 2 mRNA. The alpha 1 beta 2 combination was abundant in olfactory bulb, globus pallidus, inferior colliculus, substantia nigra pars reticulata, globus pallidus, zona incerta, subthalamic nucleus, medial septum, and cerebellum. Colocalization was also apparent for the alpha 2 and beta 3 mRNAs, and these predominated in areas such as amygdala and hypothalamus. The alpha 3 mRNA occurred in layers V and VI of neocortex and in the reticular thalamic nucleus. In much of the forebrain, with the exception of hippocampal pyramidal cells, the alpha 4 and delta transcripts appeared to codistribute. In thalamic nuclei, the only abundant GABAA receptor mRNAs were those of alpha 1, alpha 4, beta 2, and delta. In the medial geniculate thalamic nucleus, alpha 1, alpha 4, beta 2, delta, and gamma 3 mRNAs were the principal GABAA receptor transcripts. The alpha 5 and beta 1 mRNAs generally colocalized and may encode predominantly hippocampal forms of the GABAA receptor. These anatomical observations support the hypothesis that alpha 1 beta 2 gamma 2 receptors are responsible for benzodiazepine I (BZ I) binding, whereas receptors containing alpha 2, alpha 3, and alpha 5 contribute to subtypes of the BZ II site. Based on significant mismatches between alpha 4/delta and gamma mRNAs, we suggest that in vivo, the alpha 4 subunit contributes to GABAA receptors that lack BZ modulation.

1,557 citations

Journal ArticleDOI
03 Aug 1990-Science
TL;DR: Four cloned cDNAs encoding 900-amino acid putative glutamate receptors with approximately 70 percent sequence identity were isolated from a rat brain cDNA library and in situ hybridization revealed differential expression patterns of the cognate mRNAs throughout the brain.
Abstract: Four cloned cDNAs encoding 900-amino acid putative glutamate receptors with approximately 70 percent sequence identity were isolated from a rat brain cDNA library. In situ hybridization revealed differential expression patterns of the cognate mRNAs throughout the brain. Functional expression of the cDNAs in cultured mammalian cells generated receptors displaying alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-selective binding pharmacology (AMPA = quisqualate greater than glutamate greater than kainate) as well as cation channels gated by glutamate, AMPA, and kainate and blocked by 6,7-dinitroquinoxaline-2,3-dione (CNQX).

1,442 citations