scispace - formally typeset
Search or ask a question
Author

Sanjay Ghosh

Bio: Sanjay Ghosh is an academic researcher from Indian Institute of Technology Roorkee. The author has contributed to research in topics: Bilateral filter & Normalized Difference Vegetation Index. The author has an hindex of 30, co-authored 196 publications receiving 3079 citations. Previous affiliations of Sanjay Ghosh include Indian Institutes of Technology & University of Cambridge.


Papers
More filters
Journal ArticleDOI
TL;DR: The approach suggested in this paper can be used to generate accurate land cover maps, even in the presence of uncertainties in the form of mixed pixels in remote sensing images.
Abstract: Land cover mapping is perhaps the most important application of remote sensing data. The abundance of mixed pixels (representing uncertainties in class allocation), particularly in coarse spatial resolution images, has always been known to lead to difficulties in producing accurate land cover classifications. Soft classification methods may help in quantifying uncertainties in areas of transition between various types of land cover. This study aims to estimate and accommodate uncertainties in all stages of a supervised classification process (i.e. training, allocation and testing) so as to produce accurate and meaningful land cover classifications. Three soft classification methods have been used—a probabilistic maximum likelihood classifier and the two classifiers based on fuzzy set theory (fuzzy c‐means and possibilistic c‐means). Uncertainty and accuracy measures based on a fuzzy error matrix have been adopted to evaluate each classifier. All of the classifiers show an increase in classification accura...

51 citations

Journal ArticleDOI
TL;DR: In this article, the classification of crop using single date Sentinel-2 imagery in the Roorkee, district Haridwar, Uttarakhand, India is performed by using two most popular and efficient machine learning algorithms: Random Forest (RF) and Support Vector Machine (SVM).
Abstract: . Mapping of the crop using satellite images is a challenging task due to complexities within field, and having the similar spectral properties with other crops in the region. Recently launched Sentinel-2 satellite has thirteen spectral bands, fast revisit time and resolution at three different level (10 m, 20 m, 60 m), as well as the free availability of data, makes it a good choice for vegetation mapping. This study aims to classify crop using single date Sentinel-2 imagery in the Roorkee, district Haridwar, Uttarakhand, India. Classification is performed by using two most popular and efficient machine learning algorithms: Random Forest (RF) and Support Vector Machine (SVM). In this study, four spectral bands, i.e., Near Infrared, Red, Green, and Blue of Sentinel-2 satellite are stacked for the classification. Results show that overall accuracy of the classification achieved by RF and SVM using Sentinel-2 imagery are 84.22% and 81.85% respectively. This study demonstrates that both classifiers performed well by setting an optimal value of tuning parameters, but RF achieved 2.37% higher overall accuracy over SVM. Analysis of the results states that the class specific accuracies of High-Density Forest attain the highest accuracy whereas Fodder class reports the lowest accuracy. Fodder achieve lowest accuracy because there is an intermixing of pixels among Wheat and Fodder crops. In this study, it is found that RF shows better potential in classifying crops more accurately in comparison to SVM and Sentinel-2 has great potential in vegetation mapping domain in remote sensing.

50 citations

Journal ArticleDOI
TL;DR: Results illustrate that fully-fuzzy classification of Indian Remote Sensing 1C Linear Imaging Self Scanning Sensor (LISS) III imagery produces more accurate land-cover mapping than the conventional crisp classification.
Abstract: Remote sensing data are frequently used to produce crisp and fuzzy classifications for land cover applications. Fuzzy approaches are attractive for classification of images dominated by mixed pixels. Recently, fully-fuzzy classification that can incorporate mixed pixels in all the three stages of a supervised classification has been recommended. In this Letter, the results of a case study on fully-fuzzy classification of Indian Remote Sensing (IRS) 1C Linear Imaging Self Scanning Sensor (LISS) III imagery are reported. The results illustrate that fully-fuzzy classification produces more accurate land-cover mapping than the conventional crisp classification. For instance, the areal extents of three dominant classes (i.e. agriculture, forest and grass) obtained from fully-fuzzy classification differ by only 13% from the actual areal extents, compared to 34% difference in area observed from crisp classification.

49 citations

Journal ArticleDOI
TL;DR: The RDD2020 dataset as mentioned in this paper contains road images from India, Japan, and the Czech Republic with more than 31,000 instances of road damage, including longitudinal cracks, transverse cracks, alligator cracks, and potholes.

49 citations

Posted Content
TL;DR: An assessment of the usability of the Japanese model for other countries is assessed and a large-scale heterogeneous road damage dataset comprising 26620 images collected from multiple countries using smartphones is proposed.
Abstract: Many municipalities and road authorities seek to implement automated evaluation of road damage. However, they often lack technology, know-how, and funds to afford state-of-the-art equipment for data collection and analysis of road damages. Although some countries, like Japan, have developed less expensive and readily available Smartphone-based methods for automatic road condition monitoring, other countries still struggle to find efficient solutions. This work makes the following contributions in this context. Firstly, it assesses the usability of the Japanese model for other countries. Secondly, it proposes a large-scale heterogeneous road damage dataset comprising 26620 images collected from multiple countries using smartphones. Thirdly, we propose generalized models capable of detecting and classifying road damages in more than one country. Lastly, we provide recommendations for readers, local agencies, and municipalities of other countries when one other country publishes its data and model for automatic road damage detection and classification. Our dataset is available at (this https URL).

48 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal Article
TL;DR: In this article, the authors present a document, redatto, voted and pubblicato by the Ipcc -Comitato intergovernativo sui cambiamenti climatici - illustra la sintesi delle ricerche svolte su questo tema rilevante.
Abstract: Cause, conseguenze e strategie di mitigazione Proponiamo il primo di una serie di articoli in cui affronteremo l’attuale problema dei mutamenti climatici. Presentiamo il documento redatto, votato e pubblicato dall’Ipcc - Comitato intergovernativo sui cambiamenti climatici - che illustra la sintesi delle ricerche svolte su questo tema rilevante.

4,187 citations

Journal ArticleDOI
TL;DR: This review concentrates on advances in nitric oxide synthase (NOS) structure, function and inhibition made in the last seven years, during which time substantial advances have been made in the authors' understanding of this enzyme family.
Abstract: This review concentrates on advances in nitric oxide synthase (NOS) structure, function and inhibition made in the last seven years, during which time substantial advances have been made in our understanding of this enzyme family. There is now information on the enzyme structure at all levels from primary (amino acid sequence) to quaternary (dimerization, association with other proteins) structure. The crystal structures of the oxygenase domains of inducible NOS (iNOS) and vascular endothelial NOS (eNOS) allow us to interpret other information in the context of this important part of the enzyme, with its binding sites for iron protoporphyrin IX (haem), biopterin, L-arginine, and the many inhibitors which interact with them. The exact nature of the NOS reaction, its mechanism and its products continue to be sources of controversy. The role of the biopterin cofactor is now becoming clearer, with emerging data implicating one-electron redox cycling as well as the multiple allosteric effects on enzyme activity. Regulation of the NOSs has been described at all levels from gene transcription to covalent modification and allosteric regulation of the enzyme itself. A wide range of NOS inhibitors have been discussed, interacting with the enzyme in diverse ways in terms of site and mechanism of inhibition, time-dependence and selectivity for individual isoforms, although there are many pitfalls and misunderstandings of these aspects. Highly selective inhibitors of iNOS versus eNOS and neuronal NOS have been identified and some of these have potential in the treatment of a range of inflammatory and other conditions in which iNOS has been implicated.

3,418 citations

Journal Article
TL;DR: This volume is keyed to high resolution electron microscopy, which is a sophisticated form of structural analysis, but really morphology in a modern guise, the physical and mechanical background of the instrument and its ancillary tools are simply and well presented.
Abstract: I read this book the same weekend that the Packers took on the Rams, and the experience of the latter event, obviously, colored my judgment. Although I abhor anything that smacks of being a handbook (like, \"How to Earn a Merit Badge in Neurosurgery\") because too many volumes in biomedical science already evince a boyscout-like approach, I must confess that parts of this volume are fast, scholarly, and significant, with certain reservations. I like parts of this well-illustrated book because Dr. Sj6strand, without so stating, develops certain subjects on technique in relation to the acquisition of judgment and sophistication. And this is important! So, given that the author (like all of us) is somewhat deficient in some areas, and biased in others, the book is still valuable if the uninitiated reader swallows it in a general fashion, realizing full well that what will be required from the reader is a modulation to fit his vision, propreception, adaptation and response, and the kind of problem he is undertaking. A major deficiency of this book is revealed by comparison of its use of physics and of chemistry to provide understanding and background for the application of high resolution electron microscopy to problems in biology. Since the volume is keyed to high resolution electron microscopy, which is a sophisticated form of structural analysis, but really morphology in a modern guise, the physical and mechanical background of The instrument and its ancillary tools are simply and well presented. The potential use of chemical or cytochemical information as it relates to biological fine structure , however, is quite deficient. I wonder when even sophisticated morphol-ogists will consider fixation a reaction and not a technique; only then will the fundamentals become self-evident and predictable and this sine qua flon will become less mystical. Staining reactions (the most inadequate chapter) ought to be something more than a technique to selectively enhance contrast of morphological elements; it ought to give the structural addresses of some of the chemical residents of cell components. Is it pertinent that auto-radiography gets singled out for more complete coverage than other significant aspects of cytochemistry by a high resolution microscopist, when it has a built-in minimal error of 1,000 A in standard practice? I don't mean to blind-side (in strict football terminology) Dr. Sj6strand's efforts for what is \"routinely used in our laboratory\"; what is done is usually well done. It's just that …

3,197 citations

Journal ArticleDOI
TL;DR: It is suggested that designing a suitable image‐processing procedure is a prerequisite for a successful classification of remotely sensed data into a thematic map and the selection of a suitable classification method is especially significant for improving classification accuracy.
Abstract: Image classification is a complex process that may be affected by many factors. This paper examines current practices, problems, and prospects of image classification. The emphasis is placed on the summarization of major advanced classification approaches and the techniques used for improving classification accuracy. In addition, some important issues affecting classification performance are discussed. This literature review suggests that designing a suitable image-processing procedure is a prerequisite for a successful classification of remotely sensed data into a thematic map. Effective use of multiple features of remotely sensed data and the selection of a suitable classification method are especially significant for improving classification accuracy. Non-parametric classifiers such as neural network, decision tree classifier, and knowledge-based classification have increasingly become important approaches for multisource data classification. Integration of remote sensing, geographical information systems (GIS), and expert system emerges as a new research frontier. More research, however, is needed to identify and reduce uncertainties in the image-processing chain to improve classification accuracy.

2,741 citations