scispace - formally typeset
Search or ask a question
Author

Sanjay S. Latthe

Bio: Sanjay S. Latthe is an academic researcher from Shivaji University. The author has contributed to research in topics: Contact angle & Wetting. The author has an hindex of 39, co-authored 68 publications receiving 4323 citations. Previous affiliations of Sanjay S. Latthe include Korea University & Henan University.


Papers
More filters
Journal ArticleDOI
TL;DR: The superhydrophobic PS nanofiber membrane selectively absorbs oil, and is highly efficient at oil-water separation, making it a very promising material for oil spill remediation.
Abstract: The ability to prepare solid surfaces with well-controlled superhydrophobic and superoleophilic properties is of paramount importance to water–oil separation technology. Herein, we successfully prepared superhydrophobic-superoleophilic membranes by single-step deposition of polystyrene (PS) nanofibers onto a stainless steel mesh via electrospinning. The contact angles of diesel and water on the prepared PS nanofiber membrane were 0° and 155° ± 3°, respectively. Applications of the PS nanofiber membrane toward separating liquids with low surface tension, such as oil, from water were investigated in detail. Gasoline, diesel, and mineral oil were tested as representative low-viscosity oils. The PS nanofiber membranes efficiently separated several liters of oil from water in a single step, of only a few minutes’ duration. The superhydrophobic PS nanofiber membrane selectively absorbs oil, and is highly efficient at oil–water separation, making it a very promising material for oil spill remediation.

356 citations

Journal ArticleDOI
TL;DR: In this paper, the suspension of hydrophobic silica nanoparticles was dip and/or spray coated on the body of a motorcycle, building wall, mini boat, solar cell panel, window glass, cotton shirt, fabric shoes, paper (currency notes), metal, wood, sponges, plastic and marble.

333 citations

Journal ArticleDOI
TL;DR: In this article, an overview of the fabrication techniques for super-hydrophobic coating and self-cleaning (SC) applications in various fields is presented, along with the critical conclusions, forthcoming views, and obstacles on the field of the durability of SCT are discussed in the presented survey.

299 citations

Journal ArticleDOI
TL;DR: The different wetting properties of the natural superhydrophobic lotus leaves are described and a comprehensive state-of-the-art discussion on the extensive research carried out in the field of artificial superHydrophobic surfaces which are developed by mimicking the lotus leaf-like dual scale micro/nanostructure is provided.
Abstract: The lotus plant is recognized as a 'King plant' among all the natural water repellent plants due to its excellent non-wettability The superhydrophobic surfaces exhibiting the famous 'Lotus Effect', along with extremely high water contact angle (>150°) and low sliding angle (<10°), have been broadly investigated and extensively applied on variety of substrates for potential self-cleaning and anti-corrosive applications Since 1997, especially after the exploration of the surface micro/nanostructure and chemical composition of the lotus leaves by the two German botanists Barthlott and Neinhuis, many kinds of superhydrophobic surfaces mimicking the lotus leaf-like structure have been widely reported in the literature This review article briefly describes the different wetting properties of the natural superhydrophobic lotus leaves and also provides a comprehensive state-of-the-art discussion on the extensive research carried out in the field of artificial superhydrophobic surfaces which are developed by mimicking the lotus leaf-like dual scale micro/nanostructure This review article could be beneficial for both novice researchers in this area as well as the scientists who are currently working on non-wettable, superhydrophobic surfaces

278 citations

Journal ArticleDOI
TL;DR: In this paper, the best hydrophobic coating sol was prepared with methyltriethoxysilane (MTES), methanol (MeOH), and water at a molar ratio of 1:19.1:4.

251 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Design, and Applications Shutao Wang,“, Kesong Liu, Xi Yao, and Lei Jiang*,†,‡,§ †Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, and ‡Beijing National Laboratory for Molecular Science.
Abstract: Design, and Applications Shutao Wang,†,‡ Kesong Liu, Xi Yao, and Lei Jiang*,†,‡,§ †Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, and ‡Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, BeiHang University, Beijing 100191, People’s Republic of China Department of Biomedical Sciences, City University of Hong Kong, Hong Kong P6903, People’s Republic of China

1,218 citations

Journal ArticleDOI
TL;DR: The most recent progress in preparing manmade superhydrophobic surfaces through a variety of methodologies, particularly within the past several years, are reviewed and the fundamental theories of wetting phenomena related to superhydphobic surfaces are reviewed.

878 citations

Journal ArticleDOI
TL;DR: A review of the recent progress of oil/water separation technologies based on filtration and absorption methods using various materials that possess surface superwetting properties is presented in this article.
Abstract: Oil/water separation is a field of high significance as it has direct practical implications for resolving the problem of industrial oily wastewater and other oil/water pollution. Therefore, the development of functional materials for efficient treatment of oil-polluted water is imperative. In this feature article, we have reviewed the recent progress of oil/water separation technologies based on filtration and absorption methods using various materials that possess surface superwetting properties. In each section, we present in detail representative work and describe the concepts, employed materials, fabrication methods, and the effects of their wetting/dewetting behaviors on oil/water separation. Finally, the challenges and future research directions of this promising research field are briefly discussed.

762 citations

Journal ArticleDOI
TL;DR: A more detailed description of the biomedical areas where sol-gel materials have been explored and found to hold significant potential is given in this paper, where a generalized description of various solgel methods available and how these chemistries control the bulk properties of the end products is presented.

582 citations

Journal ArticleDOI
TL;DR: In this article, the fundamental principles and applications of heterogeneous electrochemical wastewater treatment based on Fenton's chemistry reaction are discussed and the required features of good heterogeneous catalysts are discussed, followed by the mechanisms of catalytic activation of H2O2 to reactive oxygen species (ROS) especially hydroxyl radical ( OH) by heterogeneous catalyst in Hetero-EF system.
Abstract: This exhaustive review focuses on the fundamental principles and applications of heterogeneous electrochemical wastewater treatment based on Fenton’s chemistry reaction. The elementary equations involved in formation of hydroxyl radical in homogeneous electro-Fenton (EF) and photo electro-Fenton (PEF) processes was presented and the advantages of using insoluble solids as heterogeneous catalyst rather than soluble iron salts (heterogeneous electro-Fenton process) (Hetero-EF) was enumerated. Some of the required features of good heterogeneous catalysts were discussed, followed by the mechanisms of catalytic activation of H2O2 to reactive oxygen species (ROS) especially hydroxyl radical ( OH) by heterogeneous catalyst in Hetero-EF system. Extensive discussion on the two configuration of Hetero-EF system vis-a-vis added solid catalysts and functionalized cathodic materials were provided along with summaries of some relevant studies that are available in literature. The solid catalysts and the functionalized cathodic materials that have been utilized in Hetero-EF wastewater treatment were grouped into different classes and brief discussion on their synthesis route were given. Besides, the use of solid catalysts and iron-functionalized cathodic materials in bioelectrochemical system (BES) especially bioelectro-Fenton technology (BEF) using microbial fuel cells (MFCs) with concurrent electricity generation for Hetero-EF treatment of biorefractory organic pollutants was discussed. In the final part, emphasis was made on the challenges and future prospects of the Hetero-EF for wastewater treatment.

574 citations