scispace - formally typeset
Search or ask a question
Author

Sanjeev Arora

Bio: Sanjeev Arora is an academic researcher from Princeton University. The author has contributed to research in topics: Approximation algorithm & Optimization problem. The author has an hindex of 72, co-authored 216 publications receiving 26293 citations. Previous affiliations of Sanjeev Arora include University of California, Berkeley.


Papers
More filters
MonographDOI
20 Apr 2009
TL;DR: This beginning graduate textbook describes both recent achievements and classical results of computational complexity theory and can be used as a reference for self-study for anyone interested in complexity.
Abstract: This beginning graduate textbook describes both recent achievements and classical results of computational complexity theory. Requiring essentially no background apart from mathematical maturity, the book can be used as a reference for self-study for anyone interested in complexity, including physicists, mathematicians, and other scientists, as well as a textbook for a variety of courses and seminars. More than 300 exercises are included with a selected hint set.

2,965 citations

Journal ArticleDOI
TL;DR: It is proved that no MAX SNP-hard problem has a polynomial time approximation scheme, unless NP = P, and there exists a positive ε such that approximating the maximum clique size in an N-vertex graph to within a factor of Nε is NP-hard.
Abstract: We show that every language in NP has a probablistic verifier that checks membership proofs for it using logarithmic number of random bits and by examining a constant number of bits in the proof. If a string is in the language, then there exists a proof such that the verifier accepts with probability 1 (i.e., for every choice of its random string). For strings not in the language, the verifier rejects every provided “proof” with probability at least 1/2. Our result builds upon and improves a recent result of Arora and Safra [1998] whose verifiers examine a nonconstant number of bits in the proof (though this number is a very slowly growing function of the input length).As a consequence, we prove that no MAX SNP-hard problem has a polynomial time approximation scheme, unless NP = P. The class MAX SNP was defined by Papadimitriou and Yannakakis [1991] and hard problems for this class include vertex cover, maximum satisfiability, maximum cut, metric TSP, Steiner trees and shortest superstring. We also improve upon the clique hardness results of Feige et al. [1996] and Arora and Safra [1998] and show that there exists a positive e such that approximating the maximum clique size in an N-vertex graph to within a factor of Ne is NP-hard.

1,501 citations

Proceedings ArticleDOI
24 Oct 1992
TL;DR: Agarwal et al. as discussed by the authors showed that the MAXSNP-hard problem does not have polynomial-time approximation schemes unless P=NP, and for some epsilon > 0 the size of the maximal clique in a graph cannot be approximated within a factor of n/sup 1/ε / unless P = NP.
Abstract: The class PCP(f(n),g(n)) consists of all languages L for which there exists a polynomial-time probabilistic oracle machine that used O(f(n)) random bits, queries O(g(n)) bits of its oracle and behaves as follows: If x in L then there exists an oracle y such that the machine accepts for all random choices but if x not in L then for every oracle y the machine rejects with high probability. Arora and Safra (1992) characterized NP as PCP(log n, (loglogn)/sup O(1)/). The authors improve on their result by showing that NP=PCP(logn, 1). The result has the following consequences: (1) MAXSNP-hard problems (e.g. metric TSP, MAX-SAT, MAX-CUT) do not have polynomial time approximation schemes unless P=NP; and (2) for some epsilon >0 the size of the maximal clique in a graph cannot be approximated within a factor of n/sup epsilon / unless P=NP. >

1,277 citations

Journal ArticleDOI
TL;DR: It is shown that approximating Clique and Independent Set, even in a very weak sense, is NP-hard, and the class NP contains exactly those languages for which membership proofs can be verified probabilistically in polynomial time.
Abstract: We give a new characterization of NP: the class NP contains exactly those languages L for which membership proofs (a proof that an input x is in L) can be verified probabilistically in polynomial time using logarithmic number of random bits and by reading sublogarithmic number of bits from the proof.We discuss implications of this characterization; specifically, we show that approximating Clique and Independent Set, even in a very weak sense, is NP-hard.

1,261 citations

Proceedings Article
24 Apr 2017
TL;DR: This paper showed that using word embeddings computed using one of the popular methods on unlabeled corpus like Wikipedia, represent the sentence by a weighted average of the word vectors, and then modify them a bit using PCA/SVD.
Abstract: The success of neural network methods for computing word embeddings has motivated methods for generating semantic embeddings of longer pieces of text, such as sentences and paragraphs. Surprisingly, Wieting et al (ICLR'16) showed that such complicated methods are outperformed, especially in out-of-domain (transfer learning) settings, by simpler methods involving mild retraining of word embeddings and basic linear regression. The method of Wieting et al. requires retraining with a substantial labeled dataset such as Paraphrase Database (Ganitkevitch et al., 2013). The current paper goes further, showing that the following completely unsupervised sentence embedding is a formidable baseline: Use word embeddings computed using one of the popular methods on unlabeled corpus like Wikipedia, represent the sentence by a weighted average of the word vectors, and then modify them a bit using PCA/SVD. This weighting improves performance by about 10% to 30% in textual similarity tasks, and beats sophisticated supervised methods including RNN's and LSTM's. It even improves Wieting et al.'s embeddings. This simple method should be used as the baseline to beat in future, especially when labeled training data is scarce or nonexistent. The paper also gives a theoretical explanation of the success of the above unsupervised method using a latent variable generative model for sentences, which is a simple extension of the model in Arora et al. (TACL'16) with new "smoothing" terms that allow for words occurring out of context, as well as high probabilities for words like and, not in all contexts.

1,174 citations


Cited by
More filters
Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Posted Content
TL;DR: GraphSAGE is presented, a general, inductive framework that leverages node feature information (e.g., text attributes) to efficiently generate node embeddings for previously unseen data and outperforms strong baselines on three inductive node-classification benchmarks.
Abstract: Low-dimensional embeddings of nodes in large graphs have proved extremely useful in a variety of prediction tasks, from content recommendation to identifying protein functions. However, most existing approaches require that all nodes in the graph are present during training of the embeddings; these previous approaches are inherently transductive and do not naturally generalize to unseen nodes. Here we present GraphSAGE, a general, inductive framework that leverages node feature information (e.g., text attributes) to efficiently generate node embeddings for previously unseen data. Instead of training individual embeddings for each node, we learn a function that generates embeddings by sampling and aggregating features from a node's local neighborhood. Our algorithm outperforms strong baselines on three inductive node-classification benchmarks: we classify the category of unseen nodes in evolving information graphs based on citation and Reddit post data, and we show that our algorithm generalizes to completely unseen graphs using a multi-graph dataset of protein-protein interactions.

7,926 citations

Proceedings Article
15 Feb 2016
TL;DR: Deep Compression as mentioned in this paper proposes a three-stage pipeline: pruning, quantization, and Huffman coding to reduce the storage requirement of neural networks by 35x to 49x without affecting their accuracy.
Abstract: Neural networks are both computationally intensive and memory intensive, making them difficult to deploy on embedded systems with limited hardware resources. To address this limitation, we introduce "deep compression", a three stage pipeline: pruning, trained quantization and Huffman coding, that work together to reduce the storage requirement of neural networks by 35x to 49x without affecting their accuracy. Our method first prunes the network by learning only the important connections. Next, we quantize the weights to enforce weight sharing, finally, we apply Huffman coding. After the first two steps we retrain the network to fine tune the remaining connections and the quantized centroids. Pruning, reduces the number of connections by 9x to 13x; Quantization then reduces the number of bits that represent each connection from 32 to 5. On the ImageNet dataset, our method reduced the storage required by AlexNet by 35x, from 240MB to 6.9MB, without loss of accuracy. Our method reduced the size of VGG-16 by 49x from 552MB to 11.3MB, again with no loss of accuracy. This allows fitting the model into on-chip SRAM cache rather than off-chip DRAM memory. Our compression method also facilitates the use of complex neural networks in mobile applications where application size and download bandwidth are constrained. Benchmarked on CPU, GPU and mobile GPU, compressed network has 3x to 4x layerwise speedup and 3x to 7x better energy efficiency.

7,256 citations

Posted Content
TL;DR: In this article, a two time-scale update rule (TTUR) was proposed for training GANs with stochastic gradient descent on arbitrary GAN loss functions, which has an individual learning rate for both the discriminator and the generator.
Abstract: Generative Adversarial Networks (GANs) excel at creating realistic images with complex models for which maximum likelihood is infeasible. However, the convergence of GAN training has still not been proved. We propose a two time-scale update rule (TTUR) for training GANs with stochastic gradient descent on arbitrary GAN loss functions. TTUR has an individual learning rate for both the discriminator and the generator. Using the theory of stochastic approximation, we prove that the TTUR converges under mild assumptions to a stationary local Nash equilibrium. The convergence carries over to the popular Adam optimization, for which we prove that it follows the dynamics of a heavy ball with friction and thus prefers flat minima in the objective landscape. For the evaluation of the performance of GANs at image generation, we introduce the "Frechet Inception Distance" (FID) which captures the similarity of generated images to real ones better than the Inception Score. In experiments, TTUR improves learning for DCGANs and Improved Wasserstein GANs (WGAN-GP) outperforming conventional GAN training on CelebA, CIFAR-10, SVHN, LSUN Bedrooms, and the One Billion Word Benchmark.

5,354 citations